Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cosmet Sci ; 59(1): 59-69, 2008.
Article in English | MEDLINE | ID: mdl-18350235

ABSTRACT

This study concerning the permeability through skin barriers of copper complexes with peptides is an important part of the research on their biological activity. The transport of copper complexes through the skin is essential in treatment of dermatological dysfunctions connected to the deficiency of these elements in the skin. During the last several years, a special interest in transepidermal copper delivery has been observed. This is the reason why copper compounds have been used as active compounds in care cosmetics. Yet, the transport process of copper complexes with tripeptides, glycyl-histidyl-lysine GHK, or gamma-glutamyl-cysteinyl-glycine GSH through the stratum corneum has received very little attention in the literature so far. The penetration ability of GHK-Cu and GSH-Cu through the stratum corneum and the influence of the complexes with tripeptide on the copper ion transport process is the key factor in their cosmetic and pharmaceutical activity. The in vitro penetration process was studied in the model system, a Franz diffusion cell with a liposome membrane, where liquid crystalline systems of physicochemical properties similar to the ones of the intercellular cement of stratum corneum were used as a standard model of a skin barrier. The results obtained demonstrated that copper complexes permeate through the membranes modeling the horny lipid layer and showed the influence of peptides on the dynamics of copper ion diffusion.


Subject(s)
Copper/pharmacokinetics , Glutathione/pharmacokinetics , Metalloproteins/pharmacokinetics , Oligopeptides/pharmacokinetics , Humans , Membranes, Artificial , Skin Absorption
2.
Anal Bioanal Chem ; 388(5-6): 1157-63, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17530231

ABSTRACT

Copper can be found in many cosmetic formulations, mainly as complexes with peptides, hydroxyacids or amino acids. The main reason that the usage of this element in this context is still increasing is its beneficial biochemical activity, although the mechanism that enables its complexes to permeate through skin barriers is largely unknown. The ability of copper complexes with amino acids to penetrate through the stratum corneum and participate in copper ion transport processes is key to their cosmetic and pharmaceutical activities. The penetration process was studied in vitro in a model system, a Franz diffusion cell with a liposome membrane, where a liquid crystalline system with physicochemical properties similar to those of the intercellular cement of stratum corneum was used to model the skin barrier. The influences of various ligands on the model membrane migration rate of copper ions was studied, and the results highlighted the crucial roles of metal ion complex structure and stability in this process.


Subject(s)
Amino Acids/chemistry , Copper/chemistry , Skin/drug effects , Spectrometry, Mass, Electrospray Ionization/methods , Chemistry, Physical/methods , Diffusion , Humans , Ions , Kinetics , Liposomes/chemistry , Mass Spectrometry , Membranes/chemistry , Permeability , Skin/metabolism , Spectrophotometry, Ultraviolet
3.
Talanta ; 72(2): 650-4, 2007 Apr 30.
Article in English | MEDLINE | ID: mdl-19071668

ABSTRACT

In mammalian organisms copper can be found mainly in the form of complex with specific tripeptide, GHK-Cu (glycyl-l-histidyl-l-lysine-Cu(II)). GHK-Cu is the basic form in which copper is transported in tissues and permeates through cell membranes. The penetration ability of GHK-Cu through the stratum corneum and its role in copper ions transport process is the key issue for its cosmetic and pharmaceutical activity. The permeability phenomenon was studied by use in vitro model system-Flynn diffusion cell with the liposome membrane. The earlier studies on the influence of different ligands on the migration rate of copper ions through model membrane provide evidence for hampering role of ligands structure and pH of formulations in this process. Structures of copper complexes formed in solutions of different pH media were evaluated by use of ESI-MS. The permeability coefficients of copper complexes increase with increasing pH. It was proved that only tripeptide GHK and its complexes with copper: GHK-Cu and (GHK)(2)-Cu are able to migrate through membrane model of stratum corneum.

4.
Anal Bioanal Chem ; 385(6): 1098-108, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16770577

ABSTRACT

The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 microg g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that gamma-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma-glutamyl-Se-methyl-selenocysteine and gamma-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry.


Subject(s)
Garlic/metabolism , Mycorrhizae/metabolism , Selenium Compounds/metabolism , Selenium/analysis , Soil Microbiology , Enzymes/metabolism , Mass Spectrometry , Molecular Structure , Selenic Acid , Selenium/pharmacokinetics , Selenium Compounds/analysis , Selenium Compounds/chemistry , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...