Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 2(2): 74-78, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-36855765

ABSTRACT

Passivating defective regions on monolayer graphene with metal oxides remains an active area of research for graphene device integration. To effectively passivate these regions, a water-free atomic layer deposition (ALD) recipe was developed and yielded selective-area ALD (sa-ALD) of mixed-metal oxides onto line defects in monolayer graphene. The anisotropically deposited film targeted high-energy defect sites that were formed during synthesis or transfer of the graphene layer. The passivating layer exceeded 10 nm thickness with minimal deposition onto the basal plane of graphene. The mixed-metal oxide film was of comparable quality to films deposited using nonselective water-based ALD methods, as shown by X-ray photoelectron spectroscopy. The development of sa-ALD techniques to target defect regions on the graphene sheet, while keeping the basal plane intact, will provide a new mechanism to passivate graphene defects and modify the electronic and physical properties of graphene.

2.
Nano Lett ; 20(4): 2632-2638, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32208708

ABSTRACT

Atomic layer deposition (ALD) on mechanically exfoliated 2D layered materials spontaneously produces network patterns of metal oxide nanoparticles in triangular and linear deposits on the basal surface. The network patterns formed under a range of ALD conditions and were independent of the orientation of the substrate in the ALD reactor. The patterns were produced on MoS2 or HOPG when either tetrakis(dimethylamido)titanium or bis(ethylcyclopentadienyl)manganese were used as precursors, suggesting that the phenomenon is general for 2D materials. Transmission electron microscopy revealed the presence, prior to deposition, of dislocation networks along the basal plane of mechanically exfoliated 2D flakes, indicating that periodical basal plane defects related to disruptions in the van der Waals stacking of layers, such as perfect line dislocations and triangular extended stacking faults networks, introduce a surface reactivity landscape that leads to the emergence of patterned deposition.

SELECTION OF CITATIONS
SEARCH DETAIL
...