Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 10(48): 15714-15725, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36507093

ABSTRACT

In this work, several eutectic mixtures formed by fenchol and acetic acid at seven molar ratios (between 4:1 and 1:4) were characterized and studied for the first time for their possible application as extraction solvents in dispersive liquid-liquid microextraction based on the solidification of the floating organic droplet (DLLME-SFO). A group of 13 emerging contaminants (gemfibrozil, bisphenol F, bisphenol A, 17ß-estradiol, testosterone, estrone, levonorgestrel, 4-tert-octylphenol, butyl benzyl phthalate, dibutyl phthalate, 4-octylphenol, 4-nonylphenol, and dihexyl phthalate) was selected and determined by liquid chromatography with ultraviolet and tandem mass spectrometry detection. Among the studied mixtures, only those of 2:1 and 1:1 provided the suitable features from an operational and repeatability point of view, suggesting that several eutectic mixtures of the same components may also provide similar results. Once the extraction conditions of both mixtures were optimized, the method was applied to the extraction of sea water, urine, and wastewater at different concentration levels, allowing the achievement of absolute recovery values between 49 and 100% for most analytes with relative standard deviation values below 19%. In addition, several samples of each type were analyzed, finding bisphenol A and gemfibrozil in some of them. The greenness of the method was also evaluated using the AGREEprep metric. The DLLME-SFO procedure was found to be very simple, quick, and effective and with a good sample throughput.

2.
Polymers (Basel) ; 12(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899679

ABSTRACT

Manufacturing new electrolytes with high ionic conductivity has been a crucial challenge in the development and large-scale distribution of fuel cell devices. In this work, we present two Nafion composite membranes containing a non-stoichiometric calcium titanate perovskite (CaTiO3-δ) as a filler. These membranes are proposed as a proton exchange electrolyte for Polymer Electrolyte Membrane (PEM) fuel cell devices. More precisely, two different perovskite concentrations of 5 wt% and 10 wt%, with respect to Nafion, are considered. The structural, morphological, and chemical properties of the composite membranes are studied, revealing an inhomogeneous distribution of the filler within the polymer matrix. Direct methanol fuel cell (DMFC) tests, at 110 °C and 2 M methanol concentration, were also performed. It was observed that the membrane containing 5 wt% of the additive allows the highest cell performance in comparison to the other samples, with a maximum power density of about 70 mW cm-2 at 200 mA cm-2. Consequently, the ability of the perovskite structure to support proton carriers is here confirmed, suggesting an interesting strategy to obtain successful materials for electrochemical devices.

3.
Membranes (Basel) ; 9(11)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683556

ABSTRACT

A composite membrane based on a Nafion polymer matrix incorporating a non-stoichiometric calcium titanium oxide (CaTiO3-δ) additive was synthesized and characterized by means of thermal analysis, dynamic mechanical analysis, and broadband dielectric spectroscopy at different filler contents; namely two concentrations of 5 and 10 wt.% of the CaTiO3-δ additive, with respect to the dry Nafion content, were considered. The membrane with the lower amount of additive displayed the highest water affinity and the highest conductivity, indicating that a too-high dose of additive can be detrimental for these particular properties. The mechanical properties of the composite membranes are similar to those of the plain Nafion membrane and are even slightly improved by the filler addition. These findings indicate that perovskite oxides can be useful as a water-retention and reinforcing additive in low-humidity proton-exchange membranes.

4.
Polymers (Basel) ; 11(5)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121828

ABSTRACT

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.

SELECTION OF CITATIONS
SEARCH DETAIL
...