Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 13(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-29021318

ABSTRACT

Phenotypic expression may be and often is influenced by an organism's developmental environment, referred to as phenotypic plasticity. The sperm cells of teleosts have been found to be inactive in the seminal plasma and are activated by osmotic shock for most fish species, through release in either hypertonic (for marine fish) or hypotonic (for freshwater fish) water. If this is the case, the regulatory system of sperm mobility should be reversed in salt- and freshwater fish. We tested this hypothesis by first activating sperm of salt- and freshwater populations of threespine stickleback in salt- and freshwater. The sperm from saltwater stickleback could be activated in either salinity, which matches the freshwater colonization history of the species, whereas the sperm from the freshwater population acted as predicted by the osmotic shock theory and was activated in freshwater only. As the freshwater population used here was calculated to be thousands of years old, we went on to test whether the trait(s) were plastic and sperm from freshwater males still could be activated in saltwater after individuals were exposed to saltwater. After raising freshwater stickleback in saltwater, we found the mature males to have active sperm in both saltwater and freshwater. Further, we also found the sperm of wild-caught freshwater stickleback to be active in saltwater after exposing those mature males to saltwater for only 2 days. This illustrates that the ability for stickleback sperm to be activated in a range of water qualities is an environmentally induced plastic trait.


Subject(s)
Adaptation, Physiological , Salinity , Smegmamorpha/physiology , Sperm Motility/physiology , Animals , Ecosystem , Fresh Water , Male , Osmotic Pressure/physiology , Phenotype , Seawater , Smegmamorpha/genetics
2.
Ecol Evol ; 6(10): 3154-60, 2016 05.
Article in English | MEDLINE | ID: mdl-27096076

ABSTRACT

In the threespine stickleback Gasterosteus aculeatus model system, phenotypes are often classified into three morphs according to lateral plate number. Morph identity has been shown to be largely genetically determined, but substantial within-morph variation in plate number exists. In this study, we test whether plate number has a plastic component in response to salinity in the low-plated morph using a split-clutch experiment where families were split in two, one half raised in water at 0 and the other at 30 ppt salt. We find a small salinity-induced plastic effect on plate number in an unexpected direction, opposite to what we predicted: Fish raised in freshwater on average have slightly more plates than fish raised in saltwater. Our results confirm that heritability of plate number is high. Additionally, we find that variance in plate number at the family level can be predicted from other family level traits, which might indicate that epistatic interactions play a role in creating the observed pattern of lateral plate number variation.

3.
Ecol Evol ; 6(10): 3161-73, 2016 05.
Article in English | MEDLINE | ID: mdl-27096077

ABSTRACT

Understanding the genetic basis of traits involved in adaptive divergence and speciation is one of the most fundamental objectives in evolutionary biology. Toward that end, we look for signatures of extreme plate loss in the genome of freshwater threespine sticklebacks (Gasterosteus aculeatus). Plateless stickleback have been found in only a few lakes and streams across the world; they represent the far extreme of a phenotypic continuum (plate number) that has been studied for years, although plateless individuals have not yet been the subject of much investigation. We use a dense single nucleotide polymorphism dataset made using RADseq to study fish from three freshwater populations containing plateless and low plated individuals, as well as fish from full plated marine populations. Analyses were performed using FastStructure, sliding windows F ST, Bayescan and latent factor mixed models to search for genomic differences between the low plated and plateless phenotypes both within and among the three lakes. At least 18 genomic regions which may contribute to within-morph plate number variation were detected in our low plated stickleback populations. We see no evidence of a selective sweep between low and plateless fish; rather reduction of plate number within the low plated morph seems to be polygenic.

4.
Mol Ecol ; 25(8): 1697-713, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26818626

ABSTRACT

Epigenetic modifications are expected to occur at a much faster rate than genetic mutations, potentially causing isolated populations to stochastically drift apart, or if they are subjected to different selective regimes, to directionally diverge. A high level of genome-wide epigenetic divergence between individuals occupying distinct habitats is therefore predicted. Here, we introduce bisulfite-converted restriction site associated DNA sequencing (bsRADseq), an approach to quantify the level of DNA methylation differentiation across multiple individuals. This reduced representation method is flexible in the extent of DNA sequence interrogated. We showcase its applicability in three natural systems, each comprising individuals adapted to divergent environments: a diploid plant (Heliosperma, Caryophyllaceae), a tetraploid plant (Dactylorhiza, Orchidaceae) and an animal (Gasterosteusaculeatus, Gasterosteidae). We present a robust bioinformatic pipeline, combining tools for RAD locus assembly, SNP calling, bisulfite-converted read mapping and DNA methylation calling to analyse bsRADseq data with or without a reference genome. Importantly, our approach accurately distinguishes between SNPs and methylation polymorphism (SMPs). Although DNA methylation frequency between different positions of a genome varies widely, we find a surprisingly high consistency in the methylation profile between individuals thriving in divergent ecological conditions, particularly in Heliosperma. This constitutive stability points to significant molecular or developmental constraints acting on DNA methylation variation. Altogether, by combining the flexibility of RADseq with the accuracy of bisulfite sequencing in quantifying DNA methylation, the bsRADseq methodology and our bioinformatic pipeline open up the opportunity for genome-wide epigenetic investigations of evolutionary and ecological relevance in non-model species, independent of their genomic features.


Subject(s)
Caryophyllaceae/genetics , DNA Methylation , Epigenesis, Genetic , Genetics, Population , Orchidaceae/genetics , Smegmamorpha/genetics , Animals , Caryophyllaceae/classification , Computational Biology , Genome , Orchidaceae/classification , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...