Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 8(1): 15, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33423037

ABSTRACT

Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits.

2.
Plants (Basel) ; 9(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085407

ABSTRACT

Onion (Allium cepa L.) is the second most important vegetable crop worldwide and is widely appreciated for its health benefits. Despite its significant economic importance and its value as functional food, onion has been poorly investigated with respect to its genetic diversity. Herein, we surveyed the genetic variation in the "Acquaviva red onion" (ARO), a landrace with a century-old history of cultivation in a small town in the province of Bari (Apulia, Southern of Italy). A set of 11 microsatellite markers were used to explore the genetic variation in a germplasm collection consisting of 13 ARO populations and three common commercial types. Analyses of genetic structure with parametric and non-parametric methods highlighted that the ARO represents a well-defined gene pool, clearly distinct from the Tropea and Montoro landraces with which it is often mistaken. In order to provide a description of bulbs, usually used for fresh consumption, soluble solid content and pungency were evaluated, showing higher sweetness in the ARO with respect to the two above mentioned landraces. Overall, the present study is useful for the future valorization of the ARO, which could be promoted through quality labels which could contribute to limit commercial frauds and improve the income of smallholders.

3.
Plant Physiol ; 178(3): 1096-1111, 2018 11.
Article in English | MEDLINE | ID: mdl-30297455

ABSTRACT

Almond (Prunus dulcis) is the principal Prunus species in which the consumed and thus commercially important part of the fruit is the kernel. As a result of continued selection, the vast majority of almonds have a nonbitter kernel. However, in the field, there are trees carrying bitter kernels, which are toxic to humans and, consequently, need to be removed. The toxicity of bitter almonds is caused by the accumulation of the cyanogenic diglucoside amygdalin, which releases toxic hydrogen cyanide upon hydrolysis. In this study, we identified and characterized the enzymes involved in the amygdalin biosynthetic pathway: PdCYP79D16 and PdCYP71AN24 as the cytochrome P450 (CYP) enzymes catalyzing phenylalanine-to-mandelonitrile conversion, PdUGT94AF3 as an additional monoglucosyl transferase (UGT) catalyzing prunasin formation, and PdUGT94AF1 and PdUGT94AF2 as the two enzymes catalyzing amygdalin formation from prunasin. This was accomplished by constructing a sequence database containing UGTs known, or predicted, to catalyze a ß(1→6)-O-glycosylation reaction and a Basic Local Alignment Search Tool search of the draft version of the almond genome versus these sequences. Functional characterization of candidate genes was achieved by transient expression in Nicotiana benthamiana Reverse transcription quantitative polymerase chain reaction demonstrated that the expression of PdCYP79D16 and PdCYP71AN24 was not detectable or only reached minute levels in the sweet almond genotype during fruit development, while it was high and consistent in the bitter genotype. Therefore, the basis for the sweet kernel phenotype is a lack of expression of the genes encoding the two CYPs catalyzing the first steps in amygdalin biosynthesis.


Subject(s)
Amygdalin/metabolism , Cytochrome P-450 Enzyme System/metabolism , Prunus dulcis/enzymology , Amygdalin/chemistry , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Gene Expression , Genotype , Glucosides/chemistry , Glucosides/metabolism , Nitriles/chemistry , Nitriles/metabolism , Nuts , Phenotype , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus dulcis/chemistry , Prunus dulcis/genetics , Nicotiana/genetics , Nicotiana/metabolism
4.
Genes (Basel) ; 9(8)2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30065184

ABSTRACT

The bitterness and toxicity of wild-type seeds of Prunoideae is due to the cyanogenic glucoside amygdalin. In cultivated almond (Prunus dulcis (Mill.) D.A. Webb), a dominant mutation at the Sk locus prevents amygdalin accumulation and thus results in edible sweet kernels. Here, we exploited sequence similarity and synteny between the genomes of almond and peach (Prunus persica (L.) Batsch) to identify cleaved amplified polymorphic sequence (CAPS) molecular markers linked to the Sk locus. A segregant F1 population was used to map these markers on the Sk genomic region, together with Sk-linked simple sequence repeat (SSR) markers previously described. Molecular fingerprinting of a cultivar collection indicated the possibility to use CAPS polymorphisms identified in this study in breeding programs arising from different parental combinations. Overall, we highlight a set of codominant markers useful for early selection of sweet kernel genotypes, an aspect of primary importance in almond breeding. In addition, by showing collinearity between the physical map of peach and the genetic map of almond with respect to the Sk genomic region, we provide valuable information for further marker development and Sk positional cloning.

5.
Plant Genome ; 10(2)2017 07.
Article in English | MEDLINE | ID: mdl-28724069

ABSTRACT

The accurate description of plant biodiversity is of utmost importance to efficiently address efforts in conservation genetics and breeding. Herein, we report the successful application of a genotyping-by-sequencing (GBS) approach in chickpea ( L.), resulting in the characterization of a cultivated germplasm collection with 3187 high-quality single nucleotide polymorphism (SNP) markers. Genetic structure inference, principal component analysis, and hierarchical clustering all indicated the identification of a genetic cluster corresponding to black-seeded genotypes traditionally cultivated in Southern Italy. Remarkably, this cluster was clearly distinct at both genetic and phenotypic levels from germplasm groups reflecting commercial chickpea classification into and seed types. Fixation index estimates for individual polymorphisms pointed out loci and genomic regions that might be of significance for the diversification of agronomic and commercial traits. Overall, our findings provide information on genetic relationships within cultivated chickpea and highlight a gene pool of great interest for the scientific community and chickpea breeding, which is limited by the low genetic diversity available in the primary gene pool.


Subject(s)
Cicer/genetics , Genes, Plant , Genome-Wide Association Study , Genotype , Multigene Family , Italy , Polymorphism, Single Nucleotide , Reproducibility of Results
6.
BMC Genomics ; 18(1): 59, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28068911

ABSTRACT

BACKGROUND: Melon (Cucumis melo L.) is one of the most important horticultural species, which includes several taxonomic groups. With the advent of next-generation sequencing, single nucleotide polymorphism (SNP) markers are widely used in the study of genetic diversity and genomics. RESULTS: We report the first successful application of genotyping-by-sequencing (GBS) technology in melon. We detected 25,422 SNPs by the analysis of 72 accessions collected in Apulia, a secondary centre of diversity in Southern Italy. Analyses of genetic structure, principal components, and hierarchical clustering support the identification of three distinct subpopulations. One of them includes accessions known with the folk name of 'carosello', referable to the chate taxonomic group. This is one of the oldest domesticated forms of C. melo, once widespread in Europe and now exposed to the risk of genetic erosion. The second subpopulation contains landraces of 'barattiere', a regional vegetable production that was never characterized at the DNA level and we show was erroneously considered another form of chate melon. The third subpopulation includes genotypes of winter melon (C. melo var. inodorus). Genetic analysis within each subpopulation revealed patterns of diversity associated with fruit phenotype and geographical origin. We used SNP data to describe, for each subpopulation, the average linkage disequilibrium (LD) decay, and to highlight genomic regions possibly resulting from directional selection and associated with phenotypic variation. CONCLUSIONS: We used GBS to characterize patterns of genetic diversity and genomic features within C. melo. We provide useful information to preserve endangered gene pools and to guide the use of germplasm in breeding. Finally, our findings lay a foundation for molecular breeding approaches and the identification of genes underlying phenotypic traits.


Subject(s)
Cucumis melo/genetics , Gene Pool , Genotyping Techniques , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Genome-Wide Association Study , Linkage Disequilibrium
SELECTION OF CITATIONS
SEARCH DETAIL
...