Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 34(1): 57-69, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38164610

ABSTRACT

Chromatin organization in the C. elegans germline is tightly regulated and critical for germ cell differentiation. Although certain germline epigenetic regulatory mechanisms have been identified, how they influence chromatin structure and ultimately gene expression remains unclear, in part because most genomic studies have focused on data collected from intact worms comprising both somatic and germline tissues. We therefore analyzed histone modification and chromatin accessibility data from isolated germ nuclei representing undifferentiated proliferating and meiosis I populations to define chromatin states. We correlated these states with overall transcript abundance, spatiotemporal expression patterns, and the function of small RNA pathways. Because the essential role of the germline is to transmit genetic information and establish gene expression in the early embryo, we compared epigenetic and transcriptomic profiles from undifferentiated germ cells to those of embryos to define the epigenetic changes during this developmental transition. The active histone modification H3K4me3 shows particularly dynamic remodeling as germ cells differentiate into oocytes, which suggests a mechanism for establishing early transcription of essential genes during zygotic genome activation. This analysis highlights the dynamism of the chromatin landscape across developmental transitions and provides a resource for future investigation into epigenetic regulatory mechanisms in germ cells.


Subject(s)
Caenorhabditis elegans , Chromatin , Histones , Animals , Chromatin/genetics , Chromatin/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Oogenesis/genetics , Germ Cells , Gene Expression Regulation, Developmental
2.
Mol Biol Evol ; 39(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36318827

ABSTRACT

A vast body of studies is available that describe age-dependent gene expression in relation to aging in a number of different model species. These data were obtained from animals kept in conditions with reduced environmental challenges, abundant food, and deprivation of natural sensory stimulation. Here, we compared wild- and captive aging in the short-lived turquoise killifish (Nothobranchius furzeri). These fish inhabit temporary ponds in the African savannah. When the ponds are flooded, eggs hatch synchronously, enabling a precise timing of their individual and population age. We collected the brains of wild fish of different ages and quantified the global age-dependent regulation of transcripts using RNAseq. A major difference between captive and wild populations is that wild populations had unlimited access to food and hence grew to larger sizes and reached asymptotic size more rapidly, enabling the analysis of age-dependent gene expression without the confounding effect of adult brain growth. We found that the majority of differentially expressed genes show the same direction of regulation in wild and captive populations. However, a number of genes were regulated in opposite direction. Genes downregulated in the wild and upregulated in captivity were enriched for terms related to neuronal communication. Genes upregulated in the wild and downregulated in captive conditions were enriched in terms related to DNA replication. Finally, the rate of age-dependent gene regulation was higher in wild animals, suggesting a phenomenon of accelerated aging.


Subject(s)
Cyprinodontiformes , Fundulidae , Animals , Fundulidae/genetics , Aging/genetics , Cyprinodontiformes/genetics , Animals, Wild/genetics , Brain
3.
G3 (Bethesda) ; 11(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34519784

ABSTRACT

To ensure stable transmission of genetic information to the next generation, germ cells frequently silence sex chromosomes, as well as autosomal loci that promote inappropriate differentiation programs. In Caenorhabditis elegans, silenced and active genomic domains are established in germ cells by the histone modification complexes MES-2/3/6 and MES-4, which promote silent and active chromatin states, respectively. These states are generally mutually exclusive and modulation of one state influences the pattern of the other. Here, we identify the zinc-finger protein OEF-1 as a novel modifier of this epigenetic balance in the C. elegans germline. Loss of oef-1 genetically enhances mes mutant phenotypes. Moreover, OEF-1 binding correlates with the active modification H3K36me3 and sustains H3K36me3 levels in the absence of MES-4 activity. OEF-1 also promotes efficient mRNA splicing activity, a process that is influenced by H3K36me3 levels. Finally, OEF-1 limits deposition of the silencing modification H3K27me3 on the X chromosome and at repressed autosomal loci. We propose that OEF-1 might act as an intermediary to mediate the downstream effects of H3K36me3 that promote transcript integrity, and indirectly affect gene silencing as a consequence.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Germ Cells/metabolism , Histone Code , Histones/metabolism , X Chromosome , Zinc
4.
Mol Syst Biol ; 16(6): e9596, 2020 06.
Article in English | MEDLINE | ID: mdl-32558274

ABSTRACT

A progressive loss of protein homeostasis is characteristic of aging and a driver of neurodegeneration. To investigate this process quantitatively, we characterized proteome dynamics during brain aging in the short-lived vertebrate Nothobranchius furzeri combining transcriptomics and proteomics. We detected a progressive reduction in the correlation between protein and mRNA, mainly due to post-transcriptional mechanisms that account for over 40% of the age-regulated proteins. These changes cause a progressive loss of stoichiometry in several protein complexes, including ribosomes, which show impaired assembly/disassembly and are enriched in protein aggregates in old brains. Mechanistically, we show that reduction of proteasome activity is an early event during brain aging and is sufficient to induce proteomic signatures of aging and loss of stoichiometry in vivo. Using longitudinal transcriptomic data, we show that the magnitude of early life decline in proteasome levels is a major risk factor for mortality. Our work defines causative events in the aging process that can be targeted to prevent loss of protein homeostasis and delay the onset of age-related neurodegeneration.


Subject(s)
Aging/metabolism , Brain/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Ribosomes/metabolism , Aging/genetics , Animals , Biophysical Phenomena , Cyprinodontiformes/genetics , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Risk Factors , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...