Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Commun Biol ; 7(1): 615, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777862

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Subject(s)
Adenosine Deaminase , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Zebrafish , Animals , Zebrafish/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/deficiency , Hematopoietic Stem Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Signal Transduction , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
2.
Drug Test Anal ; 15(9): 980-986, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37154073

ABSTRACT

The work discusses the results of hair and urine testing performed in 51 cases of suspected in utero drug exposure handled at the University Hospital of Verona from 2016 to 2022. On the day of birth or the day after birth, urine from mother and newborn (UM and UN) and hair from mother (HM), newborn (HN) and father (HF), if possible, were collected. Urine underwent immunoassay and GC-MS analysis, whereas hair underwent LC-MS/MS and GC-MS/MS analysis. In 50 out of 51 cases, HM and/or HN were available. In 92% of them, hair testing resulted in a positive, often (>50% cases) for more than one class of substance. The most detected substances were cocaine, opiates, methadone and cannabinoids. Maternal segmental analysis showed a prevalent decreasing concentration trend during pregnancy in case of positivity for one class of substances, whereas, as expected, a neatly prevalent increasing trend in the case of positivity for more than one class of substances. In nine cases, HF was also available, resulting in all being positive, usually for the same classes of substances identified in HM, thus questioning parental responsibility. In 33 cases, urine samples from the mother or newborn were also collected. Of them, 27 cases (82%) tested positive, showing peri-partum drug consumption and then confirming the severity of the addiction. Hair testing showed to be a reliable diagnostic tool to investigate in utero drug exposure because of the possibility of obtaining a complete picture of maternal addictive behaviour and family background, thanks to segmental maternal hair analysis and father hair testing.


Subject(s)
Cocaine , Substance-Related Disorders , Pregnancy , Infant, Newborn , Female , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Cocaine/analysis , Hair/chemistry , Hospitals , Substance Abuse Detection/methods
3.
Haematologica ; 107(9): 2183-2194, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35263984

ABSTRACT

Multiple myeloma (MM) is an incurable hematologic neoplasm, whose poor prognosis is deeply affected by the propensity of tumor cells to localize in the bone marrow (BM) and induce the protumorigenic activity of normal BM cells, leading to events associated with tumor progression, including tumor angiogenesis, osteoclastogenesis, and the spread of osteolytic bone lesions. The interplay between MM cells and the BM niche does not only rely on direct cell-cell interaction, but a crucial role is also played by MM-derived extracellular vesicles (MM-EV). Here, we demonstrated that the oncogenic NOTCH receptors are part of MM-EV cargo and play a key role in EV protumorigenic ability. We used in vitro and in vivo models to investigate the role of EV-derived NOTCH2 in stimulating the protumorigenic behavior of endothelial cells and osteoclast progenitors. Importantly, MM-EV can transfer NOTCH2 between distant cells and increase NOTCH signaling in target cells. MM-EV stimulation increases endothelial cell angiogenic ability and osteoclast differentiation in a NOTCH2-dependent way. Indeed, interfering with NOTCH2 expression in MM cells may decrease the amount of NOTCH2 also in MM-EV and affect their angiogenic and osteoclastogenic potential. Finally, we demonstrated that the pharmacologic blockade of NOTCH activation by γ-secretase inhibitors may hamper the biological effect of EV derived by MM cell lines and by the BM of MM patients. These results provide the first evidence that targeting the NOTCH pathway may be a valid therapeutic strategy to hamper the protumorigenic role of EV in MM as well as other tumors.


Subject(s)
Extracellular Vesicles , Multiple Myeloma , Bone Marrow/pathology , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Multiple Myeloma/pathology , Tumor Microenvironment
4.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352756

ABSTRACT

Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Zebrafish Proteins/metabolism , Zebrafish/genetics , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Embryo, Nonmammalian/cytology , Gene Expression Profiling , Genome , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Cohesins
5.
Front Cell Dev Biol ; 8: 844, 2020.
Article in English | MEDLINE | ID: mdl-33015043

ABSTRACT

Histone deacetylase 8 (HDAC8), a class I HDAC that modifies non-histone proteins such as p53, is highly expressed in different hematological neoplasms including a subtype of acute myeloid leukemia (AML) bearing inversion of chromosome 16 [inv(16)]. To investigate HDAC8 contribution to hematopoietic stem cell maintenance and myeloid leukemic transformation, we generated a zebrafish model with Hdac8 overexpression and observed an increase in hematopoietic stem/progenitor cells, a phenotype that could be reverted using a specific HDAC8 inhibitor, PCI-34051 (PCI). In addition, we demonstrated that AML cell lines respond differently to PCI treatment: HDAC8 inhibition elicits cytotoxic effect with cell cycle arrest followed by apoptosis in THP-1 cells, and cytostatic effect in HL60 cells that lack p53. A combination of cytarabine, a standard anti-AML chemotherapeutic, with PCI resulted in a synergistic effect in all the cell lines tested. We, then, searched for a mechanism behind cell cycle arrest caused by HDAC8 inhibition in the absence of functional p53 and demonstrated an involvement of the canonical WNT signaling in zebrafish and in cell lines. Together, we provide the evidence for the role of HDAC8 in hematopoietic stem cell differentiation in zebrafish and AML cell lines, suggesting HDAC8 inhibition as a therapeutic target in hematological malignancies. Accordingly, we demonstrated the utility of a highly specific HDAC8 inhibition as a therapeutic strategy in combination with standard chemotherapy.

6.
Article in English | MEDLINE | ID: mdl-32693369

ABSTRACT

The use of chromatography hyphenated with mass spectrometry is a well-established approach in clinical and forensic toxicology, particularly for the analysis of the so-called alternative matrices (hair, nails, oral fluid, sweat). This procedure for the quantitative determination of targeted analytes has been reported since the early 1980s and today is the golden standard in analytical toxicology. However this technology has not found wide application the broad spectrum preliminarily screening of samples which is still mostly based on immunoassays. The aim of the present work was to test a recent instrumental approach based on UHPLC-Ion Trap-MS (Toxtyper®, Bruker Daltonics) intended to be used in routine contexts for the analysis of drug of abuse applied to hair toxicological analysis. The reported analytical method is based on a simple hair pre-treatment consisting of an overnight acid incubation in 0.1 mol/L HCl, followed by direct injection, after neutralization with equimolar amount of NaOH. The separation was then performed using a reverse phase column with a rapid gradient elution of 11 min (from 1% acetonitrile in 0.1% ammonium formate to 95% acetonitrile in 0.1% ammonium formate). Detection was by a fast ion trap analyzer (32,500 m/z sec-1) operating in the mass range 70-800 m/z. The chromatographic retention time and MS2/MS3 data were used for compound identification using a proprietary database which allowed to screen for up to 987 compounds. The tested analytical method showed limits of detection in the range between 0.01 and 0.09 ng/mg of hair matrix for a panel of 16 drugs of abuse (except for MDA, morphine, 6-MAM and norketamine, which showed limits of detection of 0.25, 0.15, 0.15 and 0.25 ng/mg, respectively). The method was validated according to international guidelines on a selected panel of drugs of abuse. The analytical performance of the instrument was assessed by analyzing 968 hair samples from forensic cases. A good concordance with a reference confirmatory method based on GC-MS was found in terms of classification of both negative and positive samples. Finally, the method was also successfully tested by analyzing 12 proficiency test samples containing not only common drugs of abuse but also new psychoactive substances, including fentanyls and cathinones.


Subject(s)
Chromatography, High Pressure Liquid/methods , Hair/chemistry , Illicit Drugs/analysis , Mass Spectrometry/methods , Substance Abuse Detection/methods , Gas Chromatography-Mass Spectrometry , Humans , Limit of Detection , Linear Models , Reproducibility of Results
7.
J Cell Mol Med ; 24(11): 6272-6282, 2020 06.
Article in English | MEDLINE | ID: mdl-32323916

ABSTRACT

The transcription factor RUNX1, a pivotal regulator of HSCs and haematopoiesis, is a frequent target of chromosomal translocations, point mutations or altered gene/protein dosage. These modifications lead or contribute to the development of myelodysplasia, leukaemia or platelet disorders. A better understanding of how regulatory elements contribute to fine-tune the RUNX1 expression in haematopoietic tissues could improve our knowledge of the mechanisms responsible for normal haematopoiesis and malignancy insurgence. The cohesin RAD21 was reported to be a regulator of RUNX1 expression in the human myeloid HL60 cell line and during primitive haematopoiesis in zebrafish. In our study, we demonstrate that another cohesin, NIPBL, exerts positive regulation of RUNX1 in three different contexts in which RUNX1 displays important functions: in megakaryocytes derived from healthy donors, in bone marrow samples obtained from adult patients with acute myeloid leukaemia and during zebrafish haematopoiesis. In this model, we demonstrate that alterations in the zebrafish orthologue nipblb reduce runx1 expression with consequent defects in its erythroid and myeloid targets such as gata1a and spi1b in an opposite way to rad21. Thus, also in the absence of RUNX1 translocation or mutations, additional factors such as defects in the expression of NIPBL might induce haematological diseases.


Subject(s)
Cell Cycle Proteins/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Leukemic , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Adult , Aged , Animals , Bone Marrow Cells/metabolism , Cell Cycle Proteins/metabolism , Child , Cohort Studies , Core Binding Factor Alpha 2 Subunit/metabolism , Down-Regulation/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Megakaryocytes/metabolism , Middle Aged , Tissue Donors , Zebrafish/genetics , Zebrafish Proteins/metabolism
8.
Haematologica ; 105(7): 1925-1936, 2020 07.
Article in English | MEDLINE | ID: mdl-31582544

ABSTRACT

Multiple myeloma is still incurable due to an intrinsic aggressiveness or, more frequently, to the interactions of malignant plasma cells with the bone marrow (BM) microenvironment. Myeloma cells educate BM cells to support neoplastic cell growth, survival, acquisition of drug resistance resulting in disease relapse. Myeloma microenvironment is characterized by Notch signaling hyperactivation due to the increased expression of Notch1 and 2 and the ligands Jagged1 and 2 in tumor cells. Notch activation influences myeloma cell biology and promotes the reprogramming of BM stromal cells. In this work we demonstrate, in vitro, ex vivo and by using a zebrafish multiple myeloma model, that Jagged inhibition causes a decrease in both myeloma-intrinsic and stromal cell-induced resistance to currently used drugs, i.e. bortezomib, lenalidomide and melphalan. The molecular mechanism of drug resistance involves the chemokine system CXCR4/SDF1α. Myeloma cell-derived Jagged ligands trigger Notch activity in BM stromal cells. These, in turn, secrete higher levels of SDF1α in the BM microenvironment increasing CXCR4 activation in myeloma cells, which is further potentiated by the concomitant increased expression of this receptor induced by Notch activation. Consistently with the augmented pharmacological resistance, SDF1α boosts the expression of BCL2, Survivin and ABCC1. These results indicate that a Jagged-tailored approach may contribute to disrupting the pharmacological resistance due to intrinsic myeloma cell features or to the pathological interplay with BM stromal cells and, conceivably, improve patients' response to standard-of-care therapies.


Subject(s)
Jagged-1 Protein/genetics , Jagged-2 Protein/genetics , Multiple Myeloma , Animals , Bone Marrow , Cell Line, Tumor , Drug Resistance , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Receptors, Notch , Tumor Microenvironment , Zebrafish , Zebrafish Proteins/genetics
9.
Front Cell Dev Biol ; 7: 21, 2019.
Article in English | MEDLINE | ID: mdl-30873408

ABSTRACT

The genes of the cohesin complex exert different functions, ranging from the adhesion of sister chromatids during the cell cycle, DNA repair, gene expression and chromatin architecture remodeling. In recent years, the improvement of DNA sequencing technologies allows the identification of cohesin mutations in different tumors such as acute myeloid leukemia (AML), acute megakaryoblastic leukemia (AMKL), and myelodysplastic syndromes (MDS). However, the role of cohesin dysfunction in cancer insurgence remains elusive. In this regard, cells harboring cohesin mutations do not show any increase in aneuploidy that might explain their oncogenic activity, nor cohesin mutations are sufficient to induce myeloid neoplasms as they have to co-occur with other causative mutations such as NPM1, FLT3-ITD, and DNMT3A. Several works, also using animal models for cohesin haploinsufficiency, correlate cohesin activity with dysregulated expression of genes involved in myeloid development and differentiation. These evidences support the involvement of cohesin mutations in myeloid neoplasms.

10.
Haematologica ; 104(7): 1332-1341, 2019 07.
Article in English | MEDLINE | ID: mdl-30630974

ABSTRACT

The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Differentiation , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Neoplastic , Leukemia, Myeloid, Acute/pathology , Mutation , Nuclear Proteins/genetics , Adult , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Hematopoiesis , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Nucleophosmin , Phenotype , Wnt Signaling Pathway , Zebrafish , Cohesins
11.
J Cell Physiol ; 231(3): 613-22, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26206533

ABSTRACT

Genetic variants within components of the cohesin complex (NIPBL, SMC1A, SMC3, RAD21, PDS5, ESCO2, HDAC8) are believed to be responsible for a spectrum of human syndromes known as "cohesinopathies" that includes Cornelia de Lange Syndrome (CdLS). CdLS is a multiple malformation syndrome affecting almost any organ and causing severe developmental delay. Cohesinopathies seem to be caused by dysregulation of specific developmental pathways downstream of mutations in cohesin components. However, it is still unclear how mutations in different components of the cohesin complex affect the output of gene regulation. In this study, zebrafish embryos and SMC1A-mutated patient-derived fibroblasts were used to analyze abnormalities induced by SMC1A loss of function. We show that the knockdown of smc1a in zebrafish impairs neural development, increases apoptosis, and specifically down-regulates Ccnd1 levels. The same down-regulation of cohesin targets is observed in SMC1A-mutated patient fibroblasts. Previously, we have demonstrated that haploinsufficiency of NIPBL produces similar effects in zebrafish and in patients fibroblasts indicating a possible common feature for neurological defects and mental retardation in cohesinopathies. Interestingly, expression analysis of Smc1a and Nipbl in developing mouse embryos reveals a specific pattern in the hindbrain, suggesting a role for cohesins in neural development in vertebrates.


Subject(s)
Apoptosis/physiology , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cyclin D1/metabolism , De Lange Syndrome/metabolism , Transcription Factors/metabolism , Zebrafish/embryology , Animals , Apoptosis/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Down-Regulation , Humans , Mice , Mutation/genetics , Transcription Factors/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...