Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 655: 1089-1103, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30577103

ABSTRACT

The compound hazard effects of multiple process cascades severely affect Chilean river systems and result in a large variety of disturbances on their ecosystems and alterations of their hydromorphologic regimes leading to extreme impacts on society, environment and infrastructure. The acute, neo-tectonically pre-determined susceptibility to seismic hazards, the widespread volcanic activity, the increasing glacier retreat and the continuous exposure to forest fires clearly disturb entire riverine systems and concur to trigger severe floods hazards. With the objective to refine the understanding of such cascading processes and to prospect feasible flood risk management strategies in such a rapidly changing environment we first classify the large river basins according to a set of disturbances (i.e. volcanic eruptions, earthquakes, glacier lake outburst floods, wild fires and mass movements). Then, we describe emblematic cases of process cascades which affected specific Chilean drainage basins and resulted in high losses as tangible examples of how the cascading processes may unfold in other river basins with similar characteristics. As an attempt to enrich the debate among management authorities and academia in Chile, and elsewhere, on how to sustainably manage river systems, we: a) highlight the pivotal need to determine the possible process cascades that may profoundly alter the system and b) we suggest to refine hazard and risk assessments accordingly, accounting for the current and future exposure. We advocate, finally, for the adoption of holistic approaches promoting anticipatory adaptation which may result in resilient system responses.

2.
J Environ Manage ; 94(1): 112-24, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21908095

ABSTRACT

The characterizing feature of extreme events in steep mountain streams is the multiplicity of possible tipping process patterns such as those involving sudden morphological changes due to intense local erosion, aggradation as well as clogging of critical flow sections due to wood accumulations. Resolving a substantial part of the uncertainties underlying these hydrological cause-effect chains is a major challenge for flood risk management. Our contribution is from a methodological perspective based on an expert-based methodology to unfold natural hazard process scenarios in mountain streams to retrace their probabilistic structure. As a first step we set up a convenient system representation for natural hazard process routing. In this setting, as a second step, we proceed deriving the possible and thus consistent natural hazard process patterns by means of Formative Scenario Analysis. In a last step, hazard assessment is refined by providing, through expert elicitation, the spatial probabilistic structure of individual scenario trajectories. As complement to the theory the applicability of the method is shown through embedded examples. To conclude we discuss the major advantages of the presented methodological approach for hazard assessment compared to traditional approaches, and with respect to the risk governance process.


Subject(s)
Floods , Models, Theoretical , Rivers , European Union , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...