Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008404

ABSTRACT

The purpose of this study is to discuss how to use an external radio-opaque template in the Diffusing Alpha-emitters Radiation Therapy (DaRT) technique's pre-planning and treatment stages. This device would help to determine the proper number of sources for tumour coverage, accounting for subcutaneous invasion and augmenting DaRT safety. The procedure will be carried out in a first phase on a phantom and then applied to a clinical case. A typical DaRT procedure workflow comprises steps like tumour measurements and delineation, source number assessment, and therapy administration. As a first step, an adhesive fiberglass mesh (spaced by 2 mm) tape was applied on the skin of the patient and employed as frame of reference. A physician contoured the lesion and marked the entrance points for the needles with a radio opaque ink marker. According to the radio opaque marks and metabolic uptake the clinical target volume was defined, and with a commercial brachytherapy treatment planning system (TPS) it was possible to simulate and adjust the spatial seeds distribution. After the implant procedure a CT was again performed to check the agreement between simulations and seeds positions. With the procedure described above it was possible to simulate a DaRT procedure on a phantom in order to train physicians and subsequently apply the novel approach on patients, outlining the major issues involved in the technique. The present work innovates and supports DaRT technique for the treatment of cutaneous cancers, improving its efficacy and safety.

2.
Brachytherapy ; 20(1): 272-278, 2021.
Article in English | MEDLINE | ID: mdl-33041230

ABSTRACT

PURPOSE: The aim of this work was to analyze the exposure rates measured in the proximity of patients who underwent prostate low-dose-rate brachytherapy with I-125 implant. Effective doses to relatives and to population were computed to estimate the time to reach radioprotection dose constraints. METHODS AND MATERIALS: Measurements were obtained from 180 patients, whereas the body mass index was calculated and reported for 77 patients. The day after the implant, K˙ measurements were conducted at various skin distances and positions and converted to effective doses. A theoretical model was developed to estimate effective doses from total implanted activity. The latter was approximated with a 10-mL vial inside the patient. RESULTS: The K˙ measurements showed a low correlation with the total implanted activity, albeit an increasing trend of K˙ was observed on increasing the activity. A stronger correlation was found between body mass index and K˙ measurements. The effective dose to population is in general lower than dose constraints as well as the effective doses to relatives, with the exception of children and pregnant women, who command special precautions. We report differences between the experimental model- and theoretical model-based dose evaluation together with their comparison with previous studies found in literature. CONCLUSIONS: Based on the K˙ measurements and the results of the present analysis, it is possible to provide the patient with radiation safety instructions specifically tailored to his relatives' habits and working environment.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Radiation Protection , Brachytherapy/methods , Child , Humans , Iodine Radioisotopes/therapeutic use , Male , Pregnancy , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...