Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828994

ABSTRACT

Direct air capture with CO2 storage (DACCS) is among the carbon dioxide removal (CDR) options, with the largest gap between current deployment and needed upscaling. Here, we present a geospatial analysis of the techno-economic performance of large-scale DACCS deployment in Europe using two performance indicators: CDR costs and potential. Different low-temperature heat DACCS configurations are considered, i.e., coupled to the national power grid, using waste heat and powered by curtailed electricity. Our findings reveal that the CDR potential and costs of DACCS systems are mainly driven by (i) the availability of energy sources, (ii) the location-specific climate conditions, (iii) the price and GHG intensity of electricity, and (iv) the CO2 transport distance to the nearest CO2 storage location. The results further highlight the following key findings: (i) the limited availability of waste heat, with only Sweden potentially compensating nearly 10% of national emissions through CDR, and (ii) the need for considering transport and storage of CO2 in a comprehensive techno-economic assessment of DACCS. Finally, our geospatial analysis reveals substantial differences between regions due to location-specific conditions, i.e., useful information elements and consistent insights that will contribute to assessment and feasibility studies toward effective DACCS implementation.

2.
Cryst Growth Des ; 24(9): 3925-3932, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38708369

ABSTRACT

Temperature cycling represents an effective means for the deracemization of chiral compounds that crystallize as conglomerates and racemize in solution. In such a process, a suspension enriched in the desired enantiomer is converted into an enantiopure one through periodic cycles of crystal dissolution and crystal growth. We show that performing temperature cycling at higher temperatures leads to faster deracemization and, consequently, higher productivity. However, this comes at the cost of lower recovery, as the solution contains potentially relevant amounts of solute due to the higher solubility at an elevated temperature. In this work, we introduce and compare two process variants that mitigate this issue. The first involves temperature cycling, followed by linear cooling, whereas the second is based on merging the temperature cycles and cooling crystallization. Experiments carried out with the chiral compound N-(2-methylbenzylidene)-phenylglycine amide show that the former variant is faster than the latter, and it is easier to design and implement. In this process, the choice of an appropriate cooling rate is essential to avoid nucleation of the undesired enantiomer.

3.
Ind Eng Chem Res ; 63(12): 5028-5038, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38559666

ABSTRACT

The mutarotation kinetics and thermodynamics of the reaction α-lactose ⇌ ß-lactose have been measured in dilute solutions using liquid chromatography without any derivatization step, using a C18 column and pure water as the mobile phase. The effect of temperature (0.5-45 °C) of the starting powder composition (α-lactose-rich or ß-lactose-rich powder) and of the solvent composition (water with up to 35% weight fraction of seven organic solvents) has been experimentally investigated. Increasing the temperature leads to faster kinetics, following an Arrhenius model, and to slightly decreasing concentration-based equilibrium ratio. Conversely, increasing the weight fraction of organic solvent at 25 °C resulted in slower kinetics and smaller concentration-based equilibrium ratio. The starting powder composition is shown not to influence the kinetics or thermodynamics of the process. The corresponding parameter estimation problem is thoroughly discussed, taking into account the small difference in response factors of the lactose diastereomers.

4.
Langmuir ; 40(12): 6304-6316, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38494636

ABSTRACT

Freezing and freeze-drying processes are commonly used to extend the shelf life of drug products and to ensure their safety and efficacy upon use. When designing a freezing process, it is beneficial to characterize multiple physicochemical properties of the formulation, such as nucleation rate, crystal growth rate, temperature and concentration of the maximally freeze-concentrated solution, and melting point. Differential scanning calorimetry has predominantly been used in this context but does have practical limitations and is unable to quantify the kinetics of crystal growth and nucleation. In this work, we introduce a microfluidic technique capable of quantifying the properties of interest and use it to investigate aqueous sucrose solutions of varying concentration. Three freeze-thaw cycles were performed on droplets with 75-µm diameters at cooling and warming rates of 1 °C/min. During each cycle, the visual appearance of the droplets was optically monitored as they experienced nucleation, crystal growth, formation of the maximally freeze-concentrated solution, and melting. Nucleation and crystal growth manifested as increases in droplet brightness during the cooling phase. Heating was associated with a further increase as the temperature associated with the maximally freeze-concentrated solution was approached. Heating beyond the melting point corresponded to a decrease in brightness. Comparison with the literature confirmed the accuracy of the new technique while offering new visual data on the maximally freeze-concentrated solution. Thus, the microfluidic technique presented here may serve as a complement to differential scanning calorimetry in the context of freezing and freeze-drying. In the future, it could be applied to a plethora of mixtures that undergo such processing, whether in pharmaceutics, food production, or beyond.

5.
J Am Chem Soc ; 146(6): 3872-3882, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306469

ABSTRACT

Solid-state deracemization is the amplification of an enantiomeric excess in suspensions of conglomerate-forming chiral compounds. Although numerous chemical and biochemical compounds deracemize, its governing mechanism has remained elusive. We introduce a novel formulation of the classical population-based model of deracemization through temperature cycles to prove that suspensions deracemize whenever a simple and ubiquitous condition is met: crystal dissolution must be faster than crystal growth. Such asymmetry is a known principle of crystallization, hence explaining the generality of deracemization. Through both experiments and a theoretical analysis, we demonstrate that this condition applies even for very small temperature cycles and for random temperature fluctuations. These findings establish solid-state deracemization as an attractive route to the manufacture of enantiopure products and as a plausible pathway toward the emergence of homochirality in nature.

6.
J Chromatogr A ; 1715: 464553, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38159403

ABSTRACT

Preparative and analytical chromatography are impaired by analytes that undergo a chemical reaction during the chromatographic separation, leading to peak distortion and systematic errors during the subsequent quantification phase. The pitfalls are highlighted through a combination of analytical results and numerical simulations. Two different quantification strategies for partially overlapping and reacting peaks are compared. A novel method development strategy based on the valley-to-peak ratio instead of the more common resolution is proposed. The method has been used to experimentally investigate the chromatographic behavior of a mutarotating sugar, lactose. The separation of the unprotected lactose isomers, α and ß, has been optimized using a C18 column and pure water as the mobile phase. Phase dewetting phenomena during method development have also been studied and discussed.


Subject(s)
Lactose , Water , Chromatography, High Pressure Liquid/methods , Indicators and Reagents , Isomerism
7.
Sci Rep ; 13(1): 17006, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37813929

ABSTRACT

The sealing characteristics of the geological formation located above a CO2 storage reservoir, the so-called caprock, are essential to ensure efficient geological carbon storage. If CO2 were to leak through the caprock, temporal changes in fluid geochemistry can reveal fundamental information on migration mechanisms and induced fluid-rock interactions. Here, we present the results from a unique in-situ injection experiment, where CO2-enriched fluid was continuously injected in a faulted caprock analogue. Our results show that the CO2 migration follows complex pathways within the fault structure. The joint analysis of noble gases, ion concentrations and carbon isotopes allow us to quantify mixing between injected CO2-enriched fluid and resident formation water and to describe the temporal evolution of water-rock interaction processes. The results presented here are a crucial complement to the geophysical monitoring at the fracture scale highlighting a unique migration of CO2 in fault zones.

8.
Cryst Growth Des ; 23(9): 6491-6505, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37692336

ABSTRACT

Magnesium hydroxide, Mg(OH)2, is an inorganic compound extensively employed in several industrial sectors. Nowadays, it is mostly produced from magnesium-rich minerals. Nevertheless, magnesium-rich solutions, such as natural and industrial brines, could prove to be a great treasure. In this work, synthetic magnesium chloride and sodium hydroxide (NaOH) solutions were used to recover Mg(OH)2 by reactive crystallization. A detailed experimental campaign was conducted aiming at producing grown Mg(OH)2 hexagonal platelets. Experiments were carried out in a stirred tank crystallizer operated in single- and double-feed configurations. In the single-feed configuration, globular and nanoflakes primary particles were obtained, as always reported in the literature when NaOH is used as a precipitant. However, these products are not complying with flame-retardant applications that require large hexagonal Mg(OH)2 platelets. This work suggests an effective precipitation strategy to favor crystal growth while, at the same time, limiting the nucleation mechanism. The double-feed configuration allowed the synthesis of grown Mg(OH)2 hexagonal platelets. The influence of reactant flow rates, reactant concentrations, and reaction temperature was analyzed. Scanning electron microscopy (SEM) pictures were also taken to investigate the morphology of Mg(OH)2 crystals. The proposed precipitation strategy paves the road to satisfy flame-retardant market requirements.

9.
Ind Eng Chem Res ; 62(34): 13594-13611, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37663169

ABSTRACT

The optimization of the air-solid contactor is critical to improve the efficiency of the direct air capture (DAC) process. To enable comparison of contactors and therefore a step toward optimization, two contactors are prepared in the form of pellets and wash-coated honeycomb monoliths. The desired amine functionalities are successfully incorporated onto these industrially relevant pellets by means of a procedure developed for powders, providing materials with a CO2 uptake not influenced by the morphology and the structure of the materials according to the sorption measurements. Furthermore, the amine functionalities are incorporated onto alumina wash-coated monoliths that provide a similar CO2 uptake compared to the pellets. Using breakthrough measurements, dry CO2 uptakes of 0.44 and 0.4 mmol gsorbent-1 are measured for pellets and for a monolith, respectively. NMR and IR studies of CO2 uptake show that the CO2 adsorbs mainly in the form of ammonium carbamate. Both contactors are characterized by estimated Toth isotherm parameters and linear driving force (LDF) coefficients to enable an initial comparison and provide information for further studies of the two contactors. LDF coefficients of 1.5 × 10-4 and of 1.2 × 10-3 s-1 are estimated for the pellets and for a monolith, respectively. In comparison to the pellets, the monolith therefore exhibits particularly promising results in terms of adsorption kinetics due to its hierarchical pore structure. This is reflected in the productivity of the adsorption step of 6.48 mol m-3 h-1 for the pellets compared to 7.56 mol m-3 h-1 for the monolith at a pressure drop approximately 1 order of magnitude lower, making the monoliths prime candidates to enhance the efficiency of DAC processes.

10.
Nat Commun ; 14(1): 3989, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414843

ABSTRACT

The European aviation sector must substantially reduce climate impacts to reach net-zero goals. This reduction, however, must not be limited to flight CO2 emissions since such a narrow focus leaves up to 80% of climate impacts unaccounted for. Based on rigorous life-cycle assessment and a time-dependent quantification of non-CO2 climate impacts, here we show that, from a technological standpoint, using electricity-based synthetic jet fuels and compensating climate impacts via direct air carbon capture and storage (DACCS) can enable climate-neutral aviation. However, with a continuous increase in air traffic, synthetic jet fuel produced with electricity from renewables would exert excessive pressure on economic and natural resources. Alternatively, compensating climate impacts of fossil jet fuel via DACCS would require massive CO2 storage volumes and prolong dependence on fossil fuels. Here, we demonstrate that a European climate-neutral aviation will fly if air traffic is reduced to limit the scale of the climate impacts to mitigate.


Subject(s)
Air Pollution , Aviation , Climate , Fossil Fuels
11.
J Phys Chem Lett ; 14(26): 5993-6000, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37347547

ABSTRACT

The freezing of aqueous solutions is of great relevance to multiple fields, yet the kinetics of ice nucleation, its first step, remains poorly understood. The literature focuses on the freezing of microdroplets, and it is unclear if those findings can be generalized and extended to larger volumes such as those used in the freezing of biopharmaceuticals. To this end, we study ice nucleation from aqueous solutions of ten different compositions in vials at the milliliter scale. The statistical analysis of the approximately 6,000 measured nucleation events reveals that the stochastic ice nucleation kinetics is independent of the nature and concentration of the solute. We demonstrate this by estimating the values of the kinetic parameters in the nucleation rate expression for the selected solution compositions, and we find that a single set of parameters can describe quantitatively the nucleation behavior in all solutions. This holds regardless of whether the nucleation rate is expressed as a function of the chemical potential difference, of the water activity difference, or of the supercooling. While the chemical potential difference is the thermodynamically correct driving force for nucleation and hence is more accurate from a theoretical point of view, the other two expressions allow for an easier implementation in mechanistic freezing models in pharmaceutical manufacturing.

12.
Cryst Growth Des ; 23(4): 2485-2503, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37038406

ABSTRACT

The crystallization of the two polymorphs of l-glutamic acid (LGA) is carried out in a continuous crystallization process, and its performance according to different criteria is evaluated. The study aims at identifying suitable operating conditions for producing either αLGA or ßLGA with a high polymorphic purity. To this end, we investigate the process both from a theoretical perspective and through experiments using either a single stirred-tank crystallizer or a cascade of two stirred-tank crystallizers in series. In terms of theory, we extend the MSMPR-based steady-state stability analysis of Farmer et al. (Farmer, T. C. et al. AIChE J.2016, 62, 3505-3514) by accounting for the possibility of a nonrepresentative withdrawal of the solid phase from the crystallizer. Additionally, the process is simulated using population balance equations, thereby investigating the effect of operating conditions on polymorphic purity, yield, and productivity. Guided by the model-based conclusions, we identified suitable operating conditions and experimentally tested them. The experimental campaign has demonstrated that ßLGA could be successfully and continuously produced in both process configurations according to the theory with performance as expected, whereas that was not possible for αLGA. The difference between the two stems from different operational challenges, whose consequence is that steady-state operation is attained in the case of ßLGA but not in that of αLGA. In the former case, the needle-like ßLGA crystals, which exhibit no agglomeration, tend to be only slightly oversampled; in the latter case, the prismatic αLGA crystals undergo major agglomeration and hence are very difficult to suspend and effectively withdraw from the crystallizer.

13.
Cryst Growth Des ; 23(2): 899-914, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36747576

ABSTRACT

This work presents a generalized framework to assess the accuracy of methods to estimate primary and secondary nucleation rates from experimental data. The crystallization process of a well-studied model compound was simulated by means of a novel stochastic modeling methodology. Nucleation rates were estimated from the simulated data through multiple methods and were compared with the true values. For primary nucleation, no method considered in this work was able to estimate the rates accurately under general conditions. Two deterministic methods that are widely used in the literature were shown to overpredict rates in the presence of secondary nucleation. This behavior is shared by all methods that extract rates from deterministic process attributes, as they are insensitive to primary nucleation if secondary nucleation is sufficiently fast. Two stochastic methods were found to be accurate independent of whether secondary nucleation is present, but they underestimated rates in the case where a large number of primary nuclei are formed. We hence proposed a criterion to probe the accuracy of stochastic methods for arbitrary data sets, thus providing the theoretical foundations required for their rational use. Finally, we showed how both primary and secondary nucleation rates can be inferred from the same set of detection time data by combining deterministic and stochastic considerations.

14.
Small Methods ; 7(1): e2201018, 2023 01.
Article in English | MEDLINE | ID: mdl-36440670

ABSTRACT

Characterization of particle size and shape is central to the study of particulate matter in its broadest sense. Whilst 1D characterization defines the state of the art, the development of 2D and 3D characterization methods has attracted increasing attention, due to a common need to measure particle shape alongside size. Herein, ensembles of micrometer-sized cuboidal particles are studied, for which reliable sizing techniques are currently missing. Such particles must be characterized using three orthogonal dimensions to completely describe their size and shape. To this end, the utility of an online and in-flow multiprojection imaging tool coupled with machine learning is experimentally assessed. Central to this activity, a methodology is outlined to produce micrometer-sized, non-spherical analytical standards. Such analytical standards are fabricated using photolithography, and consist of monodisperse micro-cuboidal particles of user-defined size and shape. The aforementioned activities are addressed through an experimental framework that fabricates analytical standards and subsequently uses them to validate the performance of our multiprojection imaging tool. Significantly, it is shown that the same set of data collected for particle sizing can also be used to estimate particle orientation in flow, thus defining a rapid and robust protocol to investigate the behavior of dilute particle-laden flows.


Subject(s)
Imaging, Three-Dimensional , Particle Size , Particulate Matter
15.
Cryst Growth Des ; 22(8): 5071-5080, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35942122

ABSTRACT

Despite the growing evidence for the existence of amorphous mesoscopic species in a solution and their crucial roles in crystallization, there has been the lack of a suitable method to measure the time-resolved concentrations of amorphous and crystalline mesospecies in a lab-scale stirred reactor. This has limited experimental investigations to understand the kinetics of amorphous and crystalline mesospecies formation in stirred solutions and made it challenging to measure the crystal nucleation rate directly. Here, we used depolarized light sheet microscopy to achieve time-resolved measurements of amorphous and crystalline mesospecies concentrations in solutions at varying temperatures. After demonstrating that the concentration measurement method is reasonably accurate, precise, and sensitive, we utilized this method to examine mesospecies formation both in a mixture of two miscible liquids and in an undersaturated solution of dl-valine, thus revealing the importance of a temperature change in the formation of metastable and amorphous mesospecies as well as the reproducibility of the measurements. Moreover, we used the presented method to monitor both mesospecies formation and crystal nucleation in dl-valine solutions at four different levels of supersaturation, while achieving the direct measurement of the crystal nucleation rates in stirred solutions. Our results show that, as expected, the inherent variability in nucleation originating from its stochastic nature reduces with increasing supersaturation, and the dependence of the measured nucleation rate on supersaturation is in reasonable agreement with that predicted by the classical nucleation theory.

16.
J Chem Theory Comput ; 18(8): 4952-4959, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35833664

ABSTRACT

We combine molecular dynamics simulations with experiments to estimate solubilities of an organic salt in complex growth environments. We predict the solubility by simulations of the growth and dissolution of ions at the crystal surface kink sites at different solution concentrations. Thereby, the solubility is identified as the solution's salt concentration, where the energy of the ion pair dissolved in solution equals the energy of the ion pair crystallized at the kink sites. The simulation methodology is demonstrated for the case of anhydrous sodium acetate crystallized from various solvent-antisolvent mixtures. To validate the predicted solubilities, we have measured the solubilities of sodium acetate in-house, using an experimental setup and measurement protocol that guarantees moisture-free conditions, which is key for a hygroscopic compound like sodium acetate. We observe excellent agreement between the experimental and the computationally evaluated solubilities for sodium acetate in different solvent-antisolvent mixtures. Given the agreement and the rich data the simulations produce, we can use them to complement experimental tasks, which in turn will reduce time and capital in the design of complicated industrial crystallization processes of organic salts.


Subject(s)
Molecular Dynamics Simulation , Salts , Ions , Sodium Acetate , Solubility , Solvents/chemistry
17.
Int J Pharm ; 625: 122051, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35907555

ABSTRACT

Biopharmaceuticals commonly require freezing to ensure the stability of the active pharmaceutical ingredients (APIs). At commercial scale, freezing is typically carried out over the course of days in pallets comprising tens of thousands of vials. The selected process conditions have to ensure both complete freezing in all vials and a satisfactory manufacturing throughput. Current process design, however, is mainly experimental, since no mechanistic understanding of pallet freezing and its underlying phenomena has been achieved so far. Within this work, we derive a mechanistic modeling framework and compare the model predictions with engineering run data from the Janssen COVID-19 vaccine. The model qualitatively reproduced all observed trends and reveals that stochastic ice nucleation governs both process duration and batch heterogeneity. Knowledge on the ice nucleation kinetics of the formulation to be frozen thus is required to identify suitable freezing process conditions. The findings of this work pave the way towards a more rational design of pallet freezing, from which a plethora of frozen drug products may benefit. For this reason, we provide open source access to the model in the form of a python package (Deck et al., 2021).


Subject(s)
Biological Products , COVID-19 , COVID-19 Vaccines , Freeze Drying , Freezing , Humans , Ice
18.
Cryst Growth Des ; 22(6): 3625-3636, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35673395

ABSTRACT

A nucleation rate model for describing the kinetics of secondary nucleation caused by interparticle energies (SNIPEs) is derived theoretically, verified numerically, and validated experimentally. The theoretical derivation reveals that the SNIPE mechanism can be viewed as enhanced primary nucleation, i.e., primary nucleation with a lower thermodynamic energy barrier (for nucleation) and a smaller critical nucleus size, both caused by the interparticle interactions and the associated energy between the surface of a seed crystal and a molecular cluster in solution, as shown in part I of this series. In the case of a sufficiently agitated suspension, the model depends on four parameters: two reflecting primary nucleation kinetics and the other two accounting for the intensity and effective spatial range of the interparticle interactions. As a numerical verification of the model, we show that the nucleation kinetics described by the SNIPE rate model is in quantitative agreement with those given by the kinetic rate equation model developed in part II of this series. A sensitivity analysis of the SNIPE rate model is conducted to present the effect of key model parameters on the nucleation kinetics. Moreover, the SNIPE rate model is validated by fitting the model to the time-resolved data of secondary nucleation experiments as well as to two other, well-known secondary nucleation rate models. Importantly, all of the estimated parameter values for the SNIPE model were consistent with the theoretical estimates, while some of the estimated parameter values for one of the well-known secondary nucleation models deviated from the corresponding theoretical values significantly.

19.
Cryst Growth Des ; 22(3): 1846-1856, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35264910

ABSTRACT

Solid-state deracemization via temperature cycles converts a racemic crystal mixture into an enantiopure product by periodic cycling of the temperature in the presence of a racemization catalyst. A continuous counterpart of this conventional batch-operated process is proposed that can be performed in mixed suspension mixed product removal crystallizers (MSMPRCs). More specifically, three different configurations are described to perform periodic forcing via temperature cycles, which differ from each other in the type of the feed and in the withdrawal system. We have developed a model by extending our recent population balance equation model of batch solid-state deracemization via temperature cycles, and we exploit this tool to analyze the start-up and periodic steady-state behavior. Moreover, we compare the performance of the different configurations based on the selected key performance indicators, namely, average periodic steady-state enantiomeric excess and productivity. The process with solution feed yields pure enantiomers, while the solid and suspension-fed process alternatives result in highly enantiomerically enriched crystals. We further design an MSMPRC cascade to overcome this purity limitation. This work discusses guidelines on how to transform the batch process of temperature cycles into a continuous operation, which enables stable, unattended operation and chiral crystal production with consistent product quality.

20.
Cryst Growth Des ; 22(2): 1427-1436, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35140549

ABSTRACT

Inspired by deracemization via temperature cycles, which enables the collection of crystals of the desired enantiomer from an initially racemic mixture, we focus in this work on an alternative batch process, namely crystallization-induced deracemization. This process starts with a suspension of enantiomerically pure crystals, which undergoes a simple cooling crystallization, coupled with liquid-phase racemization. The experimental and model-based analysis of such a process, carried out here, revealed that: (i) deracemization via temperature cycles is a safe choice to operate with high enantiomeric purity, although its throughput is limited by the suspension density; (ii) if the distomer is less prone to nucleation, crystallization-induced deracemization is a simple process; however, its performance is strongly limited by the solubility; (iii) the purity achieved with crystallization-induced deracemization can be increased by utilizing large seed mass and by optimizing the cooling profile or catalyst concentration. Alternatively, the purity increases via partial dissolution of the seeds, which resembles the heating part of the deracemization process via temperature cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...