Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Avicenna J Phytomed ; 13(6): 575-584, 2023.
Article in English | MEDLINE | ID: mdl-38106630

ABSTRACT

Objective: Kiss1 gene expression in the rat hypothalamus was investigated following administration of methanolic extract of Hibiscus sabdariffa (MEHS) to provide mechanistic evidence for the reproductive effect of the MEHS as a potential regulator of Kiss1 gene (which directly controls the hypogonadal axis). Materials and Methods: This experiment was done using fifteen (15) male rats with average weight of 148 g, randomly grouped into three (3) groups (A-C). Group A was the control group and received no treatment. Group B and C were orally administered with 200 mg/kg and 400 mg/kg of MEHS, respectively. The animals received the extract once a day for twenty-one (21) days. The hypothalamus was harvested on the last day of administration to investigate antioxidant levels, histopathology, and Kiss1 gene expression. Results: The relative expression of Kiss1 gene in the group C was downregulated compared to the control group (p=0.023). No significant changes were seen in the antioxidant levels of the groups treated with MEHS when compared to the control. MEHS had no histopathological effects in the hypothalamus at both low (200 mg/kg) and high (400 mg/kg) doses. Conclusion: High-dose MEHS lowers the expression of the Kiss1 gene in the hypothalamus. However, this effect could not be explained by the oxidative profile or histology of the hypothalamus.

2.
Front Res Metr Anal ; 7: 855198, 2022.
Article in English | MEDLINE | ID: mdl-35494419

ABSTRACT

The advancement of scientific research and raising the next-generation scientists in Africa depend largely on science access. The COVID-19 pandemic has caused discussions around open science (OS) to reemerge globally, especially in resource-poor settings like Africa, where the practice of OS is low. The authors highlighted the elements, benefits, and existing initiatives of OS in Africa. More importantly, the article critically appraised the challenges, opportunities, and future considerations of OS in Africa. Addressing challenges of funding and leadership at different levels of educational, research, and government parastatals may be pivotal in charting a new course for OS in Africa. This review serves as an advocacy strategy and an informative guide to policymaking and institutionalization of OS in Africa.

3.
Brain Sci ; 10(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935960

ABSTRACT

Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.

4.
Pathogens ; 9(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878288

ABSTRACT

Microglia are the chief immune cells of the brain and have been reported to be activated in severe malaria. Their activation may drive towards neuroinflammation in cerebral malaria. Malaria-infected red blood cell derived-extracellular vesicles (MiREVs) are produced during the blood stage of malaria infection. They mediate intercellular communication and immune regulation, among other functions. During cerebral malaria, the breakdown of the blood-brain barrier can promote the migration of substances such as MiREVs from the periphery into the brain, targeting cells such as microglia. Microglia and extracellular vesicle interactions in different pathological conditions have been reported to induce neuroinflammation. Unlike in astrocytes, microglia-extracellular vesicle interaction has not yet been described in malaria infection. Therefore, in this study, we aimed to investigate the uptake of MiREVs by human microglia cells and their cytokine response. Human blood monocyte-derived microglia (MoMi) were generated from buffy coats of anonymous healthy donors using Ficoll-Paque density gradient centrifugation. The MiREVs were isolated from the Plasmodium falciparum cultures. They were purified by ultracentrifugation and labeled with PKH67 green fluorescent dye. The internalization of MiREVs by MoMi was observed after 4 h of co-incubation on coverslips placed in a 24-well plate at 37 °C using confocal microscopy. Cytokine-gene expression was investigated using rt-qPCR, following the stimulation of the MoMi cells with supernatants from the parasite cultures at 2, 4, and 24 h, respectively. MiREVs were internalized by the microglia and accumulated in the perinuclear region. MiREVs-treated cells increased gene expression of the inflammatory cytokine TNFα and reduced gene expression of the immune suppressive IL-10. Overall, the results indicate that MiREVs may act on microglia, which would contribute to enhanced inflammation in cerebral malaria.

SELECTION OF CITATIONS
SEARCH DETAIL
...