Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(7): e0011396, 2023 07.
Article in English | MEDLINE | ID: mdl-37498938

ABSTRACT

Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness. In our analysis, we use a dynamic transmission model fit to epidemiological data from Mandoul to evaluate the cost-effectiveness of combinations of active screening, improved passive screening (defined as an expansion of the number of health posts capable of screening for gHAT), and vector control activities (the deployment of Tiny Targets to control the tsetse vector). For cost-effectiveness analyses, our primary outcome is disease burden, denominated in disability-adjusted life-years (DALYs), and costs, denominated in 2020 US$. Although active and passive screening have enabled more rapid diagnosis and accessible treatment in Mandoul, the addition of vector control provided good value-for-money (at less than $750/DALY averted) which substantially increased the probability of reaching the 2030 elimination target for gHAT as set by the World Health Organization. Our transmission modelling and economic evaluation suggest that the gains that have been made could be maintained by passive screening. Our analysis speaks to comparative efficiency, and it does not take into account all possible considerations; for instance, any cessation of ongoing active screening should first consider that substantial surveillance activities will be critical to verify the elimination of transmission and to protect against the possible importation of infection from neighbouring endemic foci.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Chad/epidemiology , Cost-Benefit Analysis , Trypanosoma brucei gambiense
2.
Infect Dis Poverty ; 11(1): 11, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35074016

ABSTRACT

BACKGROUND: In recent years, a programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biology of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted to data between 2000 and 2013 which suggested that transmission was interrupted by 2015. The present study outlines refinements to the model to: (1) Assess whether elimination of transmission has already been achieved despite low-level case reporting; (2) quantify the role of intensified interventions in transmission reduction; and (3) predict the trajectory of gHAT in Mandoul for the next decade under different strategies. METHOD: Our previous gHAT transmission model for Mandoul was updated using human case data (2000-2019) and a series of model refinements. These include how diagnostic specificity is incorporated into the model and improvements to the fitting method (increased variance in observed case reporting and how underreporting and improvements to passive screening are captured). A side-by-side comparison of fitting to case data was performed between the models. RESULTS: We estimated that passive detection rates have increased due to improvements in diagnostic availability in fixed health facilities since 2015, by 2.1-fold for stage 1 detection, and 1.5-fold for stage 2. We find that whilst the diagnostic algorithm for active screening is estimated to be highly specific (95% credible interval (CI) 99.9-100%, Specificity = 99.9%), the high screening and low infection levels mean that some recently reported cases with no parasitological confirmation might be false positives. We also find that the focus-wide tsetse reduction estimated through model fitting (95% CI 96.1-99.6%, Reduction = 99.1%) is comparable to the reduction previously measured by the decline in tsetse catches from monitoring traps. In line with previous results, the model suggests that transmission was interrupted in 2015 due to intensified interventions. CONCLUSIONS: We recommend that additional confirmatory testing is performed in Mandoul to ensure the endgame can be carefully monitored. More specific measurement of cases, would better inform when it is safe to stop active screening and vector control, provided there is a strong passive surveillance system in place.


Subject(s)
Trypanosomiasis, African , Animals , Chad/epidemiology , Humans , Mass Screening , Trypanosoma brucei gambiense , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control
3.
Trop Med Infect Dis ; 5(4)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212918

ABSTRACT

BACKGROUND: Based on the premise that Africans in rural areas seek health care from traditional healers, this study investigated a collaborative model between traditional healers and the national Human African Trypanosomiasis (HAT) programs across seven endemic foci in seven central African countries by measuring the model's contribution to HAT case finding. METHOD: Traditional healers were recruited and trained by health professionals to identify HAT suspects based on its basics signs and symptoms and to refer them to the National Sleeping Sickness Control Program (NSSCP) for testing and confirmatory diagnosis. RESULTS: 35 traditional healers were recruited and trained, 28 finally participated in this study (80%) and referred 278 HAT suspects, of which 20 (7.19%) were CATT positive for the disease. Most cases originated from Bandundu (45%) in the Democratic Republic of Congo and from Ngabe (35%) in Congo. Twelve (4.32%) patients had confirmatory diagnosis. Although a statistically significant difference was not shown in terms of case finding (p = 0.56), traditional healers were able to refer confirmed HAT cases that were ultimately cared for by NCSSPs. CONCLUSION: Integrating traditional healers in the control program of HAT will likely enhance the detection of cases, thereby, eventually contributing to the elimination of HAT in the most affected communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...