Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242069

ABSTRACT

The potential for nanoparticles to cause harm to human health and the environment is correlated with their biodurability in the human body and persistence in the environment. Dissolution testing serves to predict biodurability and nanoparticle environmental persistence. In this study, dissolution testing using the continuous flow through system was used to investigate the biodurability and persistence of gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) and titanium dioxide nanoparticles (TiO2 NPs) in five different simulated biological fluids and two synthetic environmental media to predict their behaviour in real life situations. This study examined the physicochemical properties and agglomeration state of gold, silver and titanium dioxide nanoparticles before and after dissolution tests using three different techniques (UV-vis, XRD and TEM). The UV-vis spectra revealed that all three nanoparticles shifted to higher wavelengths after being exposed to simulated fluids. The titanium powder was found to be mixed with both rutile and anatase, according to XRD examination. The average diameter of gold nanoparticles was 14 nm, silver nanoparticles were 10 nm and titanium dioxide nanoparticles were 25 nm, according to TEM images. The gold and silver nanoparticles were observed to be spherical, but the titanium dioxide nanoparticles were irregular in shape, with some being spherical. The level of dissolved nanoparticles in simulated acidic media was higher in magnitude compared to that dissolved in simulated alkaline media. The results obtained via the continuous flow through dissolution system also displayed very significant dissolution rates. For TiO2 NPs the calculated half-times were in the range of 13-14 days, followed by AuNPs ranging between 4-12 days, significantly longer if compared to the half-times of AgNPs ranging between 2-7 days. AuNPs and TiO2 NPs were characterized by low dissolution rates therefore are expected to be (bio)durable in physiological surroundings and persistent in the environment thus, they might impose long-term effects on humans and the environment. In contrast, AgNPs have high dissolution rates and not (bio)durable and hence may cause short-term effects. The results suggest a hierarchy of biodurability and persistence of TiO2 NPs > AuNPs > AgNPs. It is recommended that nanoparticle product developers should follow the test guidelines stipulated by the OECD to ensure product safety for use before it is taken to the market.

2.
Toxicol Rep ; 9: 788-796, 2022.
Article in English | MEDLINE | ID: mdl-36518472

ABSTRACT

Silver nanoparticles offer a wide range of benefits including their application in several fields such as medical, food, health care, consumer, and industrial purposes. However, unlocking this potential requires a responsible and co-ordinated approach to ensure that potential challenges emanating from the use of silver nanoparticles are being addressed. In this study body fluids and environmental media were used to investigate the effects of citrate coated silver nanoparticles (cit-coated AgNPs) to mimic their behaviour in real life situations. Understanding the dissolution kinetics and behaviour of cit-coated AgNPs in simulated biological fluids and synthetic environmental media helps us predict their fate and effects on human health and the environment. The cit-coated AgNPs behaviour significantly varied in acidic and alkaline simulated fluids. Low pH and high ionic strength accelerated the rate and degree of dissolution of AgNPs in simulated fluids. Following exposure to simulated fluids cit-coated AgNPs demonstrated significant changes in agglomeration state and particle reactivity however, the morphology remained unaltered. The slow dissolution rates observed for highly agglomerated cit-coated AgNPs in simulated blood plasma, Gamble's and intestinal fluids, and freshwater indicate that there is a greater likelihood that the particles will be the cause of the observed adverse effects. In contrast, the fast dissolution rates observed for cit-coated AgNPs in simulated gastric and phagolysosomal fluid and synthetic seawater, the release of the silver ions at a fast rate, will be the cause of their short-term effects.

3.
Toxicol In Vitro ; 84: 105457, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35987448

ABSTRACT

Investigating the biodurability and persistence of titanium dioxide nanoparticles (TiO2 NPs) is of paramount importance because these parameters influence the particles' impact on human health and the environment. Contrary to most research conducted so far, the present study elucidates the dissolution kinetics, namely the dissolution rates, rate constants, order of reaction and half-times of TiO2 NPs in five different simulated biological fluids and two synthetic environmental media to predict their behaviour in real life situations. Results have shown that the dissolution of TiO2 NPs in all simulated fluids was limited. Of all the simulated biological media tested, acidic media such as phagolysosomal and gastric fluid produced the highest dissolution of TiO2 NPs compared to alkaline media such as blood plasma, Gamble's fluid, and intestinal fluid. Furthermore, when the particles were exposed to simulated environmental conditions, the dissolution was higher in high ionic strength seawater compared to freshwater. The dissolution kinetics of titanium dioxide nanoparticles followed first order reaction kinetics and were generally characterized by low dissolution rates and long half-times. These findings indicate that TiO2 NPs are very insoluble and will remain unchanged in the body and environment over long periods of time. Therefore, these particles are most likely to cause both short and long-term health effects and will remain persistent following release into the environment.


Subject(s)
Metal Nanoparticles , Nanoparticles , Humans , Kinetics , Solubility , Titanium
4.
Environ Monit Assess ; 191(3): 186, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30806796

ABSTRACT

Phytoremediation is a cost-effective, eco-friendly technology for the removal of metals from polluted areas. In this study, six different plant species (Datura stramonium, Phragmites australis, Persicaria lapathifolia, Melilotus alba, Panicum coloratum, and Cyperus eragrostis) growing in a gold mine contaminated wetland were investigated as potential phytoremediators of mercury. The accumulation of total mercury and methylmercury in plant tissues was determined during the wet and dry seasons to establish the plants' variability in accumulation. The highest accumulation of total mercury was in the tissues of Phragmites australis with recorded concentrations of 806, 495, and 833 µg kg-1 in the roots, stem, and leaves, respectively, during the dry season. The lowest accumulation levels were recorded for Melilotus alba during both seasons. The highest amount of the methylmercury was found in Phragmites australis during the dry season with a value of 618 µg kg-1. The accumulation and biotransportation were not significantly different between the seasons for some plants. The results of this study indicated that plants growing in wetlands can be used for phytoremediation of mercury and suggest the choice of species for constructed wetlands.


Subject(s)
Environmental Monitoring , Gold , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Wetlands , Biodegradation, Environmental , Biota , Mercury/analysis , Methylmercury Compounds , Mining , Plant Roots , Plants , Poaceae , Seasons , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...