Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1860(2): 452-64, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656883

ABSTRACT

BACKGROUND: Cerium oxide (CeO2) and Ce-doped nanostructured materials (NMs) are being seen as innovative therapeutic tools due to their exceptional antioxidant effects; nevertheless their bio-applications are still in their infancy. METHODS: TiO2, Ce-TiO2 and CeO2-TiO2 NMs were synthesized by a bottom-up microemulsion-mediated strategy and calcined during 7h at 650°C under air flux. The samples were compared to elucidate the physicochemical characteristics that determine cellular uptake, toxicity and the influence of redox balance between the Ce(3+)/Ce(4+) on the cytoprotective role against an exogenous ROS source: H2O2. Fibroblasts were selected as a cell model because of their participation in wound healing and fibrotic diseases. RESULTS: Ce-TiO2 NM obtained via sol-gel reaction chemistry of metallic organic precursors exerts a real cytoprotective effect against H2O2 over fibroblast proliferation, while CeO2 pre-formed nanoparticles incorporated to TiO2 crystalline matrix lead to a harmful CeO2-TiO2 material. TiO2 was processed by the same pathways as Ce-TiO2 and CeO2-TiO2 NM but did not elicit any adverse or protective influence compared to controls. CONCLUSIONS: It was found that the Ce atoms source and its concentration have a clear effect on material's physicochemical properties and its subsequent influence in the cellular response. It can induce a range of biological reactions that vary from cytotoxic to cytoprotective. GENERAL SIGNIFICANCE: Even though there are still some unresolved issues and challenges, the unique physical and chemical properties of Ce-based NMs are fascinating and versatile resources for different biomedical applications.


Subject(s)
Cerium/pharmacology , Cytoprotection , Fibroblasts/drug effects , Hydrogen Peroxide/toxicity , Nanostructures , Titanium/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Mice
2.
Article in English | MEDLINE | ID: mdl-23744606

ABSTRACT

The surfaces of three chitosan samples, differing only in their degrees of deacetylation and of carboxyethyl chitosan were chemically characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, X-ray diffraction, and Fourier transform infrared, both before and after sterilization with ethylene oxide. Unexpected elemental ratios suggest that surface chemical modification occurred during the processing of the original chitin, with further surface modification on subsequent sterilization, despite previous reports to the contrary. Cell viability was evaluated by direct contact methyl thiazole tetrazolium and lactate dehydrogenase assays between the chitosan particles and A549 human epithelial cells, which demonstrated that the modifications incurred on sterilization are reflected in biocompatibility changes. All the samples were found to be biocompatible and nontoxic before sterilization and remained so subsequently. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.

3.
J Biomed Mater Res B Appl Biomater ; 101(8): 1444-55, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24591223

ABSTRACT

The surfaces of three chitosan samples, differing only in their degrees of deacetylation and of carboxyethyl chitosan were chemically characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, X-ray diffraction, and Fourier transform infrared, both before and after sterilization with ethylene oxide. Unexpected elemental ratios suggest that surface chemical modification occurred during the processing of the original chitin, with further surface modification on subsequent sterilization, despite previous reports to the contrary. Cell viability was evaluated by direct contact methyl thiazole tetrazolium and lactate dehydrogenase assays between the chitosan particles and A549 human epithelial cells, which demonstrated that the modifications incurred on sterilization are reflected in biocompatibility changes. All the samples were found to be biocompatible and nontoxic before sterilization and remained so subsequently.


Subject(s)
Chitosan/chemistry , Ethylene Oxide/chemistry , Biocompatible Materials , Cell Line, Tumor , Cell Proliferation , Cell Survival , Chitin/chemistry , Culture Media , Fourier Analysis , Humans , L-Lactate Dehydrogenase/chemistry , Spectroscopy, Fourier Transform Infrared , Sterilization/methods , Surface Properties , Tetrazolium Salts , Thiazoles , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...