Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873468

ABSTRACT

Allogeneic cell therapies hold promise for broad clinical implementation, but face limitations due to potential rejection by the recipient immune system. Silencing of beta-2-microglobulin ( B2M ) expression is commonly employed to evade T cell-mediated rejection, although absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesion ligands CD54 and CD58 on targets cells robustly dampens NK cell reactivity across all sub-populations. Genetic deletion of CD54 and CD58 in B2M -deficient allogeneic chimeric antigen receptor (CAR) T and multi-edited induced pluripotent stem cell (iPSC)-derived NK cells reduces their susceptibility to rejection by NK cells in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection of allogeneic immune cells for immunotherapy.

2.
J Immunother Cancer ; 9(2)2021 02.
Article in English | MEDLINE | ID: mdl-33589527

ABSTRACT

BACKGROUND: Despite approval of immunotherapy for a wide range of cancers, the majority of patients fail to respond to immunotherapy or relapse following initial response. These failures may be attributed to immunosuppressive mechanisms co-opted by tumor cells. However, it is challenging to use conventional methods to systematically evaluate the potential of tumor intrinsic factors to act as immune regulators in patients with cancer. METHODS: To identify immunosuppressive mechanisms in non-responders to cancer immunotherapy in an unbiased manner, we performed genome-wide CRISPR immune screens and integrated our results with multi-omics clinical data to evaluate the role of tumor intrinsic factors in regulating two rate-limiting steps of cancer immunotherapy, namely, T cell tumor infiltration and T cell-mediated tumor killing. RESULTS: Our studies revealed two distinct types of immune resistance regulators and demonstrated their potential as therapeutic targets to improve the efficacy of immunotherapy. Among them, PRMT1 and RIPK1 were identified as a dual immune resistance regulator and a cytotoxicity resistance regulator, respectively. Although the magnitude varied between different types of immunotherapy, genetically targeting PRMT1 and RIPK1 sensitized tumors to T-cell killing and anti-PD-1/OX40 treatment. Interestingly, a RIPK1-specific inhibitor enhanced the antitumor activity of T cell-based and anti-OX40 therapy, despite limited impact on T cell tumor infiltration. CONCLUSIONS: Collectively, the data provide a rich resource of novel targets for rational immuno-oncology combinations.


Subject(s)
CRISPR-Cas Systems , Genomics , Neoplasms/genetics , Tumor Escape/genetics , Tumor Microenvironment/genetics , Animals , Cell Line, Tumor , Cytotoxicity, Immunologic/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/immunology , Neoplasms/therapy , Protein-Arginine N-Methyltransferases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Repressor Proteins/genetics , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
3.
Cancer Immunol Immunother ; 70(4): 1101-1113, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33123754

ABSTRACT

Although immunotherapy has achieved impressive durable clinical responses, many cancers respond only temporarily or not at all to immunotherapy. To find novel, targetable mechanisms of resistance to immunotherapy, patient-derived melanoma cell lines were transduced with 576 open reading frames, or exposed to arrayed libraries of 850 bioactive compounds, prior to co-culture with autologous tumor-infiltrating lymphocytes (TILs). The synergy between the targets and TILs to induce apoptosis, and the mechanisms of inhibiting resistance to TILs were interrogated. Gene expression analyses were performed on tumor samples from patients undergoing immunotherapy for metastatic melanoma. Finally, the effect of inhibiting the top targets on the efficacy of immunotherapy was investigated in multiple preclinical models. Aurora kinase was identified as a mediator of melanoma cell resistance to T-cell-mediated cytotoxicity in both complementary screens. Aurora kinase inhibitors were validated to synergize with T-cell-mediated cytotoxicity in vitro. The Aurora kinase inhibition-mediated sensitivity to T-cell cytotoxicity was shown to be partially driven by p21-mediated induction of cellular senescence. The expression levels of Aurora kinase and related proteins were inversely correlated with immune infiltration, response to immunotherapy and survival in melanoma patients. Aurora kinase inhibition showed variable responses in combination with immunotherapy in vivo, suggesting its activity is modified by other factors in the tumor microenvironment. These data suggest that Aurora kinase inhibition enhances T-cell cytotoxicity in vitro and can potentiate antitumor immunity in vivo in some but not all settings. Further studies are required to determine the mechanism of primary resistance to this therapeutic intervention.


Subject(s)
Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Drug Resistance, Neoplasm/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , T-Lymphocytes, Cytotoxic/transplantation , Animals , Apoptosis , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Cell Proliferation , Female , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/therapy , Mice , Prognosis , Survival Rate , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 25(21): 6406-6416, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31371342

ABSTRACT

PURPOSE: OX40 agonist-based combinations are emerging as a novel avenue to improve the effectiveness of cancer immunotherapy. To better guide its clinical development, we characterized the role of the OX40 pathway in tumor-reactive immune cells. We also evaluated combining OX40 agonists with targeted therapy to combat resistance to cancer immunotherapy.Experimental Design: We utilized patient-derived tumor-infiltrating lymphocytes (TILs) and multiple preclinical models to determine the direct effect of anti-OX40 agonistic antibodies on tumor-reactive CD8+ T cells. We also evaluated the antitumor activity of an anti-OX40 antibody plus PI3Kß inhibition in a transgenic murine melanoma model (Braf mutant, PTEN null), which spontaneously develops immunotherapy-resistant melanomas. RESULTS: We observed elevated expression of OX40 in tumor-reactive CD8+ TILs upon encountering tumors; activation of OX40 signaling enhanced their cytotoxic function. OX40 agonist antibody improved the antitumor activity of CD8+ T cells and the generation of tumor-specific T-cell memory in vivo. Furthermore, combining anti-OX40 with GSK2636771, a PI3Kß-selective inhibitor, delayed tumor growth and extended the survival of mice with PTEN-null melanomas. This combination treatment did not increase the number of TILs, but it instead significantly enhanced proliferation of CD8+ TILs and elevated the serum levels of CCL4, CXCL10, and IFNγ, which are mainly produced by memory and/or effector T cells. CONCLUSIONS: These results highlight a critical role of OX40 activation in potentiating the effector function of tumor-reactive CD8+ T cells and suggest further evaluation of OX40 agonist-based combinations in patients with immune-resistant tumors.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Melanoma/drug therapy , PTEN Phosphohydrolase/genetics , Receptors, OX40/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Female , Heterografts , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Receptors, OX40/antagonists & inhibitors
5.
Cell Metab ; 27(5): 977-987.e4, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29628419

ABSTRACT

Adoptive T cell therapy (ACT) produces durable responses in some cancer patients; however, most tumors are refractory to ACT and the molecular mechanisms underlying resistance are unclear. Using two independent approaches, we identified tumor glycolysis as a pathway associated with immune resistance in melanoma. Glycolysis-related genes were upregulated in melanoma and lung cancer patient samples poorly infiltrated by T cells. Overexpression of glycolysis-related molecules impaired T cell killing of tumor cells, whereas inhibition of glycolysis enhanced T cell-mediated antitumor immunity in vitro and in vivo. Moreover, glycolysis-related gene expression was higher in melanoma tissues from ACT-refractory patients, and tumor cells derived from these patients exhibited higher glycolytic activity. We identified reduced levels of IRF1 and CXCL10 immunostimulatory molecules in highly glycolytic melanoma cells. Our findings demonstrate that tumor glycolysis is associated with the efficacy of ACT and identify the glycolysis pathway as a candidate target for combinatorial therapeutic intervention.


Subject(s)
Glycolysis , Immunotherapy, Adoptive , Lung Neoplasms/therapy , Melanoma/therapy , T-Lymphocytes/transplantation , Animals , Cell Line, Tumor , Chemokine CXCL10/metabolism , Female , Humans , Interferon Regulatory Factor-1/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Male , Melanoma/immunology , Melanoma/metabolism , Mice , Mice, Inbred C57BL
6.
Clin Cancer Res ; 24(14): 3366-3376, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29496759

ABSTRACT

Purpose: Cancer immunotherapy has shown promising clinical outcomes in many patients. However, some patients still fail to respond, and new strategies are needed to overcome resistance. The purpose of this study was to identify novel genes and understand the mechanisms that confer resistance to cancer immunotherapy.Experimental Design: To identify genes mediating resistance to T-cell killing, we performed an open reading frame (ORF) screen of a kinome library to study whether overexpression of a gene in patient-derived melanoma cells could inhibit their susceptibility to killing by autologous tumor-infiltrating lymphocytes (TIL).Results: The RNA-binding protein MEX3B was identified as a top candidate that decreased the susceptibility of melanoma cells to killing by TILs. Further analyses of anti-PD-1-treated melanoma patient tumor samples suggested that higher MEX3B expression is associated with resistance to PD-1 blockade. In addition, significantly decreased levels of IFNγ were secreted from TILs incubated with MEX3B-overexpressing tumor cells. Interestingly, this phenotype was rescued upon overexpression of exogenous HLA-A2. Consistent with this, we observed decreased HLA-A expression in MEX3B-overexpressing tumor cells. Finally, luciferase reporter assays and RNA-binding protein immunoprecipitation assays suggest that this is due to MEX3B binding to the 3' untranslated region (UTR) of HLA-A to destabilize the mRNA.Conclusions: MEX3B mediates resistance to cancer immunotherapy by binding to the 3' UTR of HLA-A to destabilize the HLA-A mRNA and thus downregulate HLA-A expression on the surface of tumor cells, thereby making the tumor cells unable to be recognized and killed by T cells. Clin Cancer Res; 24(14); 3366-76. ©2018 AACRSee related commentary by Kalbasi and Ribas, p. 3239.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , HLA-A Antigens/genetics , RNA-Binding Proteins/genetics , 3' Untranslated Regions , Biomarkers, Tumor , Cell Line, Tumor , Cytotoxicity, Immunologic/genetics , Genes, Reporter , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , Humans , Interferon-gamma/biosynthesis , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Binding , RNA-Binding Proteins/metabolism
7.
J Natl Cancer Inst ; 110(7): 777-786, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29267866

ABSTRACT

Background: Immunotherapy has increasingly become a staple in cancer treatment. However, substantial limitations in the durability of response highlight the need for more rational therapeutic combinations. The aim of this study is to investigate how to make tumor cells more sensitive to T-cell-based cancer immunotherapy. Methods: Two pairs of melanoma patient-derived tumor cell lines and their autologous tumor-infiltrating lymphocytes were utilized in a high-throughput screen of 850 compounds to identify bioactive agents that could be used in combinatorial strategies to improve T-cell-mediated killing of tumor cells. RNAi, overexpression, and gene expression analyses were utilized to identify the mechanism underlying the effect of Topoisomerase I (Top1) inhibitors on T-cell-mediated killing. Using a syngeneic mouse model (n = 5 per group), the antitumor efficacy of the combination of a clinically relevant Top1 inhibitor, liposomal irinotecan (MM-398), with immune checkpoint inhibitors was also assessed. All statistical tests were two-sided. Results: We found that Top1 inhibitors increased the sensitivity of patient-derived melanoma cell lines (n = 7) to T-cell-mediated cytotoxicity (P < .001, Dunnett's test). This enhancement is mediated by TP53INP1, whose overexpression increased the susceptibility of melanoma cell lines to T-cell cytotoxicity (2549 cell line: P = .009, unpaired t test), whereas its knockdown impeded T-cell killing of Top1 inhibitor-treated melanoma cells (2549 cell line: P < .001, unpaired t test). In vivo, greater tumor control was achieved with MM-398 in combination with α-PD-L1 or α-PD1 (P < .001, Tukey's test). Prolonged survival was also observed in tumor-bearing mice treated with MM-398 in combination with α-PD-L1 (P = .002, log-rank test) or α-PD1 (P = .008, log-rank test). Conclusions: We demonstrated that Top1 inhibitors can improve the antitumor efficacy of cancer immunotherapy, thus providing the basis for developing novel strategies using Top1 inhibitors to augment the efficacy of immunotherapy.


Subject(s)
Immunotherapy, Adoptive/methods , Melanoma/therapy , T-Lymphocytes, Cytotoxic/transplantation , Topoisomerase I Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Chemotherapy, Adjuvant , Combined Modality Therapy , Female , Humans , Irinotecan/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/transplantation , Melanoma/immunology , Melanoma/pathology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/immunology , Topotecan/therapeutic use , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
8.
Nat Commun ; 8(1): 451, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878208

ABSTRACT

T-cell-based immunotherapies are promising treatments for cancer patients. Although durable responses can be achieved in some patients, many patients fail to respond to these therapies, underscoring the need for improvement with combination therapies. From a screen of 850 bioactive compounds, we identify HSP90 inhibitors as candidates for combination with immunotherapy. We show that inhibition of HSP90 with ganetespib enhances T-cell-mediated killing of patient-derived human melanoma cells by their autologous T cells in vitro and potentiates responses to anti-CTLA4 and anti-PD1 therapy in vivo. Mechanistic studies reveal that HSP90 inhibition results in upregulation of interferon response genes, which are essential for the enhanced killing of ganetespib treated melanoma cells by T cells. Taken together, these findings provide evidence that HSP90 inhibition can potentiate T-cell-mediated anti-tumor immune responses, and rationale to explore the combination of immunotherapy and HSP90 inhibitors.Many patients fail to respond to T cell based immunotherapies. Here, the authors, through a high-throughput screening, identify HSP90 inhibitors as a class of preferred drugs for treatment combination with immunotherapy.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Ipilimumab/pharmacology , Melanoma/therapy , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , HSP90 Heat-Shock Proteins/metabolism , Humans , Immunotherapy , Interferons/pharmacology , Kaplan-Meier Estimate , Melanoma/genetics , Melanoma/metabolism , Mice, Inbred C57BL , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics , Up-Regulation
9.
Cancer Discov ; 6(2): 202-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26645196

ABSTRACT

UNLABELLED: T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T-cell trafficking into tumors. In patients, PTEN loss correlates with decreased T-cell infiltration at tumor sites, reduced likelihood of successful T-cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T-cell infiltration in tumors, and inhibited autophagy, which decreased T cell-mediated cell death. Treatment with a selective PI3Kß inhibitor improved the efficacy of both anti-PD-1 and anti-CTLA-4 antibodies in murine models. Together, these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors. SIGNIFICANCE: This study adds to the growing evidence that oncogenic pathways in tumors can promote resistance to the antitumor immune response. As PTEN loss and PI3K-AKT pathway activation occur in multiple tumor types, the results support the rationale to further evaluate combinatorial strategies targeting the PI3K-AKT pathway to increase the efficacy of immunotherapy.


Subject(s)
Antibodies/administration & dosage , Melanoma/drug therapy , Melanoma/genetics , PTEN Phosphohydrolase/deficiency , T-Lymphocytes/immunology , Aminopyridines/administration & dosage , Aminopyridines/therapeutic use , Animals , Antibodies/therapeutic use , CTLA-4 Antigen/immunology , Cell Line, Tumor , Drug Resistance, Neoplasm , Drug Synergism , Humans , Immunotherapy/methods , Melanoma/immunology , Mice , Morpholines/administration & dosage , Morpholines/therapeutic use , Programmed Cell Death 1 Receptor/immunology
10.
Clin Cancer Res ; 19(2): 393-403, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23204132

ABSTRACT

PURPOSE: Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF-mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors. EXPERIMENTAL DESIGN: BRAF-mutated human melanoma tumor cell lines transduced to express gp100 and H-2D(b) to allow recognition by gp100-specific pmel-1 T cells were used as xenograft models to assess melanocyte differentiation antigen-independent enhancement of immune responses by BRAF inhibitor PLX4720. Luciferase-expressing pmel-1 T cells were generated to monitor T-cell migration in vivo. The expression of VEGF was determined by ELISA, protein array, and immunohistochemistry. Importantly, VEGF expression after BRAF inhibition was tested in a set of patient samples. RESULTS: We found that administration of PLX4720 significantly increased tumor infiltration of adoptively transferred T cells in vivo and enhanced the antitumor activity of ACT. This increased T-cell infiltration was primarily mediated by the ability of PLX4720 to inhibit melanoma tumor cell production of VEGF by reducing the binding of c-myc to the VEGF promoter. Furthermore, analysis of human melanoma patient tumor biopsies before and during BRAF inhibitor treatment showed downregulation of VEGF consistent with the preclinical murine model. CONCLUSION: These findings provide a strong rationale to evaluate the potential clinical application of combining BRAF inhibition with T-cell-based immunotherapy for the treatment of patients with melanoma.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy, Adoptive , Indoles/administration & dosage , Indoles/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma/genetics , Melanoma/therapy , Mice , Mutation , Promoter Regions, Genetic , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-myc/metabolism , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , T-Lymphocytes/drug effects , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...