Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 21(1): 101, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331242

ABSTRACT

BACKGROUND: Between 2000 and 2019, more than 1.8 billion long-lasting insecticidal nets (LLINs) were distributed in Africa. While the insecticidal durability of LLINs is around 3 years, nets are commonly discarded 2 years post distribution. This study investigated the factors associated with the decision of users to discard LLINs. METHODS: A mixed-method sequential explanatory approach using a structured questionnaire followed by focus group discussions (FGDs) to collect information on experiences, views, reasons, how and when LLINs are discarded. Out of 6,526 households that responded to the questionnaire of LLINs durability trial, 160 households were randomly selected from the households in four villages in Bagamoyo Tanzania for FGDs but only 155 households participated in the FGDs. Five of the household representatives couldn't participate due to unexpected circumstances. A total of sixteen FGDs each comprising of 8-10 adults were conducted; older women (40-60 years), older men (40-60 years), younger women (18-39 years), younger men (18-39 years). During the FGDs, participants visually inspected seven samples of LLINs that were "too-torn" based on Proportionate Hole Index recommended by the World Health Organization (WHO) guidelines on LLIN testing, the nets were brought to the discussion and participants had to determine if such LLINs were to be kept or discarded. The study assessed responses from the same participants that attended FGD and also responded to the structured questionnaire, 117 participants fulfilled the criteria, thus data from only 117 participants are analysed in this study. RESULTS: In FGDs, integrity of LLIN influenced the decision to discard or keep a net. Those of older age, women, and householders with lower income were more likely to classify a WHO "too-torn" net as "good". The common methods used to discard LLINs were burning and burying. The findings were seen in the quantitative analysis. For every additional hole, the odds of discarding a WHO "too-torn" LLIN increased [OR = 1.05 (95%CI (1.04-1.07)), p < 0.001]. Younger age group [OR = 4.97 (95%CI (3.25-7.32)), p < 0.001], male-headed households [OR = 6.85 (95%CI (4.44 -10.59)), p < 0.001], and wealthy households [OR = 3.88 (95%CI (2.33-6.46)), p < 0.001] were more likely to discard LLINs. CONCLUSION: Integrity of LLIN was the main determinant for discarding or keeping LLINs and the decision to discard the net is associated with socioeconomic status of the household, and the age and gender of respondents. WHO "too torn" nets are encouraged to be used instead of none until replacement, and disposal of nets should be based on recommendation.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Adult , Aged , Family Characteristics , Female , Humans , Insecticides/analysis , Male , Meat/analysis , Tanzania
2.
Malar J ; 20(1): 171, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33781261

ABSTRACT

BACKGROUND: As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability. METHODS: A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed. RESULTS: Some 57.0% (95% CI 53.9-60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4-86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children < 5 years (45.8%) and adults (42.1%) were prioritized, with fewer school-age children 5-14 years (35.9%), youths 15-24 years (28.1%) and seniors > 65 years (32.6%) sleeping under ITNs. Crowding ([Formula: see text] 3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: [Formula: see text] 3 people slept under them (OR 0.50 (95% CI 0.40-0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56-0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7-30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets. CONCLUSION: Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Ownership/statistics & numerical data , Cross-Sectional Studies , Family Characteristics , Insecticide-Treated Bednets/supply & distribution , Mosquito Control/instrumentation , Tanzania
3.
Malar J ; 18(1): 153, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31039788

ABSTRACT

BACKGROUND: Insecticide-treated net (ITN) durability, measured through physical integrity and bioefficacy, must be accurately assessed in order to plan the timely replacement of worn out nets and guide procurement of longer-lasting, cost-effective nets. World Health Organization (WHO) guidance advises that new intervention class ITNs be assessed 3 years after distribution, in experimental huts. In order to obtain information on whole-net efficacy cost-effectively and with adequate replication, a new bioassay, the Ifakara Ambient Chamber Test (I-ACT), a semi-field whole net assay baited with human host, was compared to established WHO durability testing methods. METHODS: Two experiments were conducted using pyrethroid-susceptible female adult Anopheles gambiae sensu stricto comparing bioefficacy of Olyset®, PermaNet® 2.0 and NetProtect® evaluated by I-ACT and WHO cone and tunnel tests. In total, 432 nets (144/brand) were evaluated using I-ACT and cone test. Olyset® nets (132/144) that did not meet the WHO cone test threshold criteria (≥ 80% mortality or ≥ 95% knockdown) were evaluated using tunnel tests with threshold criteria of ≥ 80% mortality or ≥ 90% feeding inhibition for WHO tunnel and I-ACT. Pass rate of nets tested by WHO combined standard WHO bioassays (cone/tunnel tests) was compared to pass in I-ACT only by net brand and time after distribution. RESULTS: Overall, more nets passed WHO threshold criteria when tested with I-ACT than with standard WHO bioassays 92% vs 69%, (OR: 4.1, 95% CI 3.5-4.7, p < 0.0001). The proportion of Olyset® nets that passed differed if WHO 2005 or WHO 2013 LN testing guidelines were followed: 77% vs 71%, respectively. Based on I-ACT results, PermaNet® 2.0 and NetProtect® demonstrated superior mortality and non-inferior feeding inhibition to Olyset® over 3 years of field use in Tanzania. CONCLUSION: Ifakara Ambient Chamber Test may have use for durability studies and non-inferiority testing of new ITN products. It measures composite bioefficacy and physical integrity with both mortality and feeding inhibition endpoints, using fewer mosquitoes than standard WHO bioassays (cone and tunnel tests). The I-ACT is a high-throughput assay to evaluate ITN products that work through either contact toxicity or feeding inhibition. I-ACT allows mosquitoes to interact with a host sleeping underneath a net as encountered in the field, without risk to human participants.


Subject(s)
Biological Assay/methods , Insecticide-Treated Bednets/standards , Animals , Anopheles , Biological Assay/standards , Female , Humans , Insecticide-Treated Bednets/economics , Malaria/prevention & control , Mosquito Control/methods , Pyrethrins/pharmacology , Tanzania , World Health Organization
4.
Malar J ; 17(1): 375, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30348167

ABSTRACT

BACKGROUND: The rate of physical deterioration of long-lasting insecticidal nets (LLINs) varies by household practices, net brand and environment. One way to sustain the protection provided by LLINs against malaria is through day-to-day care, and repairing holes as and when they occur. To ensure LLIN coverage is high between mass campaigns and, as international donor funds decrease, personal responsibility to maintain nets in good condition is becoming more important. This study aimed to understand local barriers and motivators to net care and repair in southern Tanzania in a community that receives free LLINs through a school-based distribution mechanism. METHODS: Qualitative research methods were applied in a rural and peri-urban village in Ruangwa district. Focus group discussions (FGDs) were conducted for five groups of 8-12 participants; (1) key informants, (2) young men (18-24 years old), (3) women (> 18 years) with children under the age of five, (4) older men (> 25 years), and (5) older women with or without children (> 25 years). In each village, five men, five women with or without children, and five women with children under the age of five were recruited for in-depth interviews (IDIs). After each IDI and FGD with women with young children, participants were guided through a participatory activity. The study also counted the number and size of holes in nets currently used by IDI participants to determine their physical degradation status. RESULTS: A general willingness to care and repair mosquito nets was observed in Ruangwa district for the love of a good night's sleep free of mosquito bites or noises. Net care was preferred over repair, especially among women who were the primary caretakers. The main motivation to look after nets was protection against mosquito bites and malaria. Washing nets occurred as frequently as every other week in some households to ensure cleanliness, which prevented other dirt-related problems such as sneezing and headaches. Barriers to net care included care not being a priority in the day-to-day activities and lack of net retreatment kits. Net repair was reported to be a temporary measure and necessary as soon as a hole was identified. However, during the net assessment and participatory activity, it became clear that people did not actually repair smaller holes. Protection against mosquitoes, malaria and cost saving from replacing nets were identified as motivators for net repair. Barriers to net repair included it not being a priority to repair holes that could be tucked under the mattress and lack of knowledge on when to repair nets. CONCLUSION: In Ruangwa, net care was defined as overall net maintenance, such as cleanliness, and not directly associated with the prevention of damage as reported in other studies. Net repair was reported as a temporary measure before the acquisition of a new net, hence not a priority in a busy household. Inconsistencies were observed between reported intentions to repair mosquito nets and current net condition. Targeted education through health facilities and community change agents are potential means to overcome barriers to net care and repair.


Subject(s)
Health Knowledge, Attitudes, Practice , Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control , Motivation , Perception , Adult , Female , Humans , Male , Rural Population , Tanzania , Young Adult
5.
Malar J ; 17(1): 100, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29490649

ABSTRACT

BACKGROUND: The Government of Tanzania is the main source of long-lasting insecticidal nets (LLINs) for its population. Mosquito nets (treated and untreated) are also available in the commercial market. To sustain investments and health gains in the fight against malaria, it is important for the National Malaria Control Programme to monitor LLIN coverage especially in the years between mass distributions and to understand what households do if their free nets are deemed unusable. The aim of this paper was to assess standard LLIN indicators by wealth status in Tanzania in 2013, 2 years after the last mass campaign in 2011, and extend the analysis to untreated nets (UTNs) to investigate how households adapt when nets are not continuously distributed. METHODS: Between October-December 2013, a household survey was conducted in 3398 households in eight districts in Tanzania. Using the Roll Back Malaria indicators, the study analysed: (1) household net ownership; (2) access to nets; (3) population net use and (4) net use:access ratio. Outcomes were calculated for LLINs and UTNs. Results were analysed by socio-economic quintiles and by district. RESULTS: Only three of the eight districts had household LLIN ownership of more than 80%. In 2013, less than a quarter of the households had one LLIN for every two people and only half of the population had access to an LLIN. Only the wealthier quintiles increased their net ownership and access to levels above 80% through the addition of UTNs. Overall net use of the population was low (LLINs: 32.8%; UTNs: 9.5%) and net use:access ratio was below target level (LLINs: 0.66; UTN: 0.50). Both measures varied significantly by district. CONCLUSIONS: Two years after the last mass campaign, the percentage of households or population with access to LLINs was low. These findings indicate the average rate at which households in Tanzania lose their nets is higher than the rate at which they acquire new nets. The wealthiest households topped up their household net ownership with UTNs. Efforts to make LLINs available through commercial markets should be promoted, so those who can afford to buy nets purchase LLINs rather than UTNs. Net use was low around 40% and mostly explained by lack of access to nets. However, the use:access ratio was poor in Mbozi and Kahama districts warranting further investigations to understand other barriers to net use.


Subject(s)
Insecticide-Treated Bednets/supply & distribution , Mosquito Control/methods , Cross-Sectional Studies , Disease Transmission, Infectious/prevention & control , Health Services Accessibility , Humans , Malaria/prevention & control , Socioeconomic Factors , Surveys and Questionnaires , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...