Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 78(3): 905-913, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34716648

ABSTRACT

BACKGROUND: Oxathiapiprolin is a piperidinyl thiazole isoxazoline fungicide discovered by DuPont and commercialized by Corteva Agriscience. It acts by inhibiting a novel fungal target, an oxysterol binding protein (OSBP), and is intrinsically highly active against oomycetes including grape downy mildew (Plasmopara viticola) and potato late blight (Phytophthora infestans). Because the fungicide acts at a single site there is a need to determine the risk of resistance development. RESULTS: Oxathiapiprolin controlled European Plasmopara viticola and Phytophthora infestans isolates at very low concentrations with half maximal effective concentration (EC50 ) values ranging from 0.001 to 0.0264 mg L-1 and 0.001 to 0.03 mg L-1 , respectively. Laboratory mutagenesis studies performed with Phytophthora capsici using ultraviolet (UV) irradiation generated mutants with reduced sensitivity to oxathiapiprolin. All resistant mutants had a base pair change in the OSBP gene that resulted in an amino acid change. Most common substitutions were S768Y, G770V, G839W and L863W. Isolates of Plasmopara viticola and Phytophthora infestans with reduced sensitivity were also detected in field trial sites where oxathiapiprolin had been applied repeatedly each season over several consecutive years. CONCLUSIONS: The risk of oxathiapiprolin resistance development in Plasmopara viticola and Phytophthora infestans is medium to high and strict resistance management measures are required. Over-exposure of target populations to single-site fungicides during product development should be avoided.


Subject(s)
Fungicides, Industrial , Oomycetes , Phytophthora infestans , Fungicides, Industrial/pharmacology , Hydrocarbons, Fluorinated , Oomycetes/genetics , Phytophthora infestans/genetics , Plant Diseases , Pyrazoles
2.
Mol Ecol Resour ; 16(4): 845-61, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26858112

ABSTRACT

Inferring reproductive and demographic parameters of populations is crucial to our understanding of species ecology and evolutionary potential but can be challenging, especially in partially clonal organisms. Here, we describe a new and accurate method, cloncase, for estimating both the rate of sexual vs. asexual reproduction and the effective population size, based on the frequency of clonemate resampling across generations. Simulations showed that our method provides reliable estimates of sex frequency and effective population size for a wide range of parameters. The cloncase method was applied to Puccinia striiformis f.sp. tritici, a fungal pathogen causing stripe/yellow rust, an important wheat disease. This fungus is highly clonal in Europe but has been suggested to recombine in Asia. Using two temporally spaced samples of P. striiformis f.sp. tritici in China, the estimated sex frequency was 75% (i.e. three-quarter of individuals being sexually derived during the yearly sexual cycle), indicating strong contribution of sexual reproduction to the life cycle of the pathogen in this area. The inferred effective population size of this partially clonal organism (Nc  = 998) was in good agreement with estimates obtained using methods based on temporal variations in allelic frequencies. The cloncase estimator presented herein is the first method allowing accurate inference of both sex frequency and effective population size from population data without knowledge of recombination or mutation rates. cloncase can be applied to population genetic data from any organism with cyclical parthenogenesis and should in particular be very useful for improving our understanding of pest and microbial population biology.


Subject(s)
Genetics, Microbial/methods , Genetics, Population/methods , Genotype , Population Density , Recombination, Genetic , Sex Distribution , Basidiomycota/classification , Basidiomycota/genetics , China , Triticum/microbiology
3.
Mol Biol Evol ; 32(11): 2932-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26232423

ABSTRACT

After colonization population sizes may vary across the species range depending on environmental conditions and following colonizations. An interesting question is whether local adaptation occurs more frequently in large ancestral populations or in small derived populations. A higher number of new mutations and a lower effect of genetic drift should favor selection in large populations, whereas small derived populations may require an initial local adaptation event to facilitate the colonization of new habitats. Wild tomatoes are native to a broad range of different habitats characterized by variable abiotic conditions in South America, and represent an ideal system to study this interplay between demography and natural selection. Population genetic analyses and statistical inference of past demography were conducted on pooled-sequencing data from 30 genes (8,080 single nucleotide polymorphisms) from an extensive sampling of 23 Solanum chilense populations over Chile and Peru. We reveal first a north-south colonization associated with relaxed purifying selection in the south as shown by a decrease of genetic variation and an increasing proportion of nonsynonymous polymorphism from north to south, and population substructure with at least four genetic groups. Second, we uncover a dual picture of adaptation consisting of 1) a decreasing proportion of adaptive amino acid substitutions from north to south suggesting that adaptation is favored in large populations, whereas 2) signatures of local adaptation predominantly occur in the smaller populations from the marginal ranges in the south.


Subject(s)
Acclimatization/genetics , Solanum/growth & development , Solanum/genetics , Adaptation, Physiological/genetics , Ecosystem , Evolution, Molecular , Genetic Variation , Genetics, Population , Genome, Plant , Polymorphism, Genetic , Population Density , Selection, Genetic/genetics , Sequence Analysis, DNA , South America
4.
PLoS One ; 8(10): e78182, 2013.
Article in English | MEDLINE | ID: mdl-24205149

ABSTRACT

The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.


Subject(s)
Plant Proteins/genetics , Solanum lycopersicum/genetics , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Droughts , Evolution, Molecular
5.
Mol Biol Evol ; 29(12): 3641-52, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22787283

ABSTRACT

Abiotic stresses such as drought, extreme temperatures, and salinity have a strong impact on plant adaptation. They act as selective forces on plant physiology and morphology. These selective pressures leave characteristic footprints that can be detected at the DNA sequence level using population genetic tools. On the basis of a candidate gene approach, we investigated signatures of adaptation in two wild tomato species, Solanum peruvianum and S. chilense. These species are native to western South America and constitute a model system for studying adaptation, due to their ability to colonize diverse habitats and the available genetic resources. We have determined the selective forces acting on the C-repeat binding factor (CBF) gene family, which consists of three genes, and is known to be involved in tolerance to abiotic stresses, in particular in cold tolerance. We also analyzed the expression pattern of these genes after drought and cold stresses. We found that CBF3 evolves under very strong purifying selection, CBF2 is under balancing selection in some populations of both species (S. peruvianum/Quicacha and S. chilense/Nazca) maintaining a trans-species polymorphism, and CBF1 is a pseudogene. In contrast to previous studies of cultivated tomatoes showing that only CBF1 was cold induced, we found that all three CBF genes are cold induced in wild tomatoes. All three genes are also drought induced. CBF2 exhibits an allele-specific expression pattern associated with the trans-species polymorphism.


Subject(s)
Adaptation, Biological/genetics , Genetic Variation , Genetics, Population , Plant Proteins/genetics , Solanum lycopersicum/genetics , Transcription Factors/genetics , Chile , Cold Temperature , Droughts , Gene Conversion/genetics , Gene Expression Profiling , Likelihood Functions , Solanum lycopersicum/growth & development , Models, Genetic , Peru , Species Specificity
6.
Evol Appl ; 5(4): 341-52, 2012 Jun.
Article in English | MEDLINE | ID: mdl-25568055

ABSTRACT

Environmental heterogeneity influences coevolution and local adaptation in host-parasite systems. This also concerns applied issues, because the geographic range of parasites may depend on their capacity to adapt to abiotic conditions. We studied temperature-specific adaptation in the wheat yellow/stripe rust pathogen, Puccinia striiformis f.sp. tritici (PST). Using laboratory experiments, PST isolates from northern and southern France were studied for their ability to germinate and to infect bread and durum wheat cultivars over a temperature gradient. Pathogen origin × temperature interactions for infectivity and germination rate suggest local adaptation to high- versus low-temperature regimes in south and north. Competition experiments in southern and northern field sites showed a general competitive advantage of southern over northern isolates. This advantage was particularly pronounced in the southern 'home' site, consistent with a model integrating laboratory infectivity and field temperature variation. The stable PST population structure in France likely reflects adaptation to ecological and genetic factors: persistence of southern PST may be due to adaptation to the warmer Mediterranean climate; and persistence of northern PST can be explained by adaptation to commonly used cultivars, for which southern isolates are lacking the relevant virulence genes. Thus, understanding the role of temperature-specific adaptations may help to improve forecast models or breeding programmes.

SELECTION OF CITATIONS
SEARCH DETAIL
...