Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Reprod Health ; 3: 699133, 2021.
Article in English | MEDLINE | ID: mdl-36303959

ABSTRACT

Endometriosis is a common but poorly understood disease. Symptoms can begin early in adolescence, with menarche, and can be debilitating. Despite this, people often suffer several years before being correctly diagnosed and adequately treated. Endometriosis involves the inappropriate growth of endometrial-like tissue (including epithelial cells, stromal fibroblasts, vascular cells, and immune cells) outside of the uterus. Computational models can aid in understanding the mechanisms by which immune, hormone, and vascular disruptions manifest in endometriosis and complicate treatment. In this review, we illustrate how three computational modeling approaches (regression, pharmacokinetics/pharmacodynamics, and quantitative systems pharmacology) have been used to improve the diagnosis and treatment of endometriosis. As we explore these approaches and their differing detail of biological mechanisms, we consider how each approach can answer different questions about endometriosis. We summarize the mathematics involved, and we use published examples of each approach to compare how researchers: (1) shape the scope of each model, (2) incorporate experimental and clinical data, and (3) generate clinically useful predictions and insight. Lastly, we discuss the benefits and limitations of each modeling approach and how we can combine these approaches to further understand, diagnose, and treat endometriosis.

2.
Exp Neurol ; 277: 268-274, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26784004

ABSTRACT

Mechanisms of primary blast injury caused by overpressure are not fully understood. In particular, the presence and time course of neuroinflammation are unknown and so are the signatures of reactive inflammatory cells, especially the neuroprotective versus injurious roles of microglia. In general, chronic microglial activation in the injured brain suggests a pro-degenerative role for these reactive cells. In this study, we investigated the temporal dynamics of microglial activation in the brain of mice exposed to mild-moderate blast in a shock tube. Because, in our previous work, we had found that torso shielding with rigid Plexiglas attenuates traumatic axonal injury in the brain, we also evaluated neuroinflammatory microglial responses in animals with torso protection at 7 days post blast injury. Because of the prominent involvement of the visual system in blast TBI in rodents, activated microglial cells were counted in the optic tract at various time points post-injury with stereological methods. Cell counts (activated microglial cell densities) from subjects exposed to blast TBI were compared with counts from corresponding sham animals. We found that mild-moderate blast injury causes focal activation of microglia in certain white matter tracts, including the visual pathway. In the optic tract, the density of activated microglial profiles gradually intensified from 3 to 15 days post-injury and then became attenuated at 30 days. Torso protection significantly reduced microglial activation at 7 days. These findings shed light into mechanisms of primary blast neurotrauma and may suggest novel diagnostic and monitoring methods for patients. They leave open the question of whether microglial activation post blast is protective or detrimental, although response is time limited. Finally, our findings confirm the protective role of torso shielding and stress the importance of improved or optimized body gear for warfighters or other individuals at risk for blast exposure.


Subject(s)
Blast Injuries/complications , Encephalitis/etiology , Encephalitis/prevention & control , Protective Devices , Torso/physiology , Analysis of Variance , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Kv1.3 Potassium Channel/metabolism , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microglia/pathology , Optic Tract/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...