Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 21(10): 1777-1786, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31588952

ABSTRACT

Chemical changes to hydraulic fracturing fluids (HFFs) within fractured unconventional reservoirs may affect hydrocarbon recovery and, in turn, the environmental impact of unconventional oil and gas development. Ethoxylated alcohol surfactants, which include alkyl ethoxylates (AEOs) and polyethylene glycols (PEGs), are often present in HFF as solvents, non-emulsifiers, and corrosion inhibitors. We present detailed analysis of polyethoxylates in HFF at the time of injection into three hydraulically fractured Marcellus Shale wells and in the produced water returning to the surface. Despite the addition of AEOs to the injection fluid during almost all stages, they were rarely detected in the produced water. Conversely, while PEGs were nearly absent in the injection fluid, they were the dominant constituents in the produced water. Similar numbers of ethoxylate units support downhole transformation of AEOs to PEGs through central cleavage of the ethoxylate chain from the alkyl group. We also observed a decrease in the average ethoxylate (EO) number of the PEG-EOs in the produced water over time, consistent with biodegradation during production. Our results elucidate an overlooked surfactant transformation pathway that may affect the efficacy of HFF to maximize oil and gas recovery from unconventional shale reservoirs.


Subject(s)
Biodegradation, Environmental , Hydraulic Fracking , Wastewater/chemistry , Minerals , Natural Gas , Oil and Gas Fields , Polyethylene Glycols , Surface-Active Agents/chemistry , Water , Water Quality
2.
Environ Sci Technol ; 52(2): 722-730, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29185717

ABSTRACT

We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.


Subject(s)
Hydroxyl Radical , Solid Phase Extraction , Chromatography, Gel , Molecular Weight , Reference Standards
3.
Glob Chang Biol ; 23(8): 3107-3120, 2017 08.
Article in English | MEDLINE | ID: mdl-28117550

ABSTRACT

Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.


Subject(s)
Carbon/chemistry , Grassland , Methane , Wetlands , North America , Sulfates
4.
Environ Sci Process Impacts ; 18(11): 1406-1416, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27711832

ABSTRACT

Non-point source pesticide pollution is a concern for wetlands in the prairie pothole region (PPR). Recent studies have demonstrated that reduced sulfur species (e.g., bisulfide and polysulfides) in PPR wetland pore waters directly undergo reactions with chloroacetanilide and dinitroaniline compounds. In this paper, the abiotic transformation of two organophosphate compounds, chlorpyrifos and chlorpyrifos-methyl, was studied in PPR wetland pore waters. Chlorpyrifos-methyl reacted significantly faster (up to 4 times) in pore water with reduced sulfur species relative to hydrolysis. No rate enhancement was observed in the transformation of chlorpyrifos in pore water with reduced sulfur species. The lack of reactivity was most likely caused by steric hindrance from the ethyl groups and partitioning to dissolved organic matter (DOM), thereby shielding chlorpyrifos from nucleophilic attack. Significant decreases in reaction rates were observed for chlorpyrifos in pore water with high concentrations of DOM. Rate enhancement due to other reactive species (e.g., organo-sulfur compounds) in pore water was minor for both compounds relative to the influence of bisulfide and DOM.


Subject(s)
Chlorpyrifos/chemistry , Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Wetlands , Chlorpyrifos/analogs & derivatives , Grassland , Hydrolysis , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...