Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; : 114376, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901620

ABSTRACT

Core-shell particles composed of polycaprolactone/polyvinyl alcohol (PCL/PVA) with pH sensitive properties were successfully fabricated by co-axial electrospraying in which PVA and PCL formed the shell and core layers respectively. The core-shell structure was confirmed by FTIR, DSC and SEM analysis. No chemical interaction between PVA and PCL core-shell were observed in the FTIR analysis. The RAD001 loaded core-shell particles showed a sustained and pH dependent drug release and was assayed via our previously developed HPLC method. After indirect treatment of the PF-A cells with the core-shell particles for 24 h and 5 days a decrease in cell viability was observed. Additionally, a comparison was made with our previously developed nanoparticles containing 2 %PVA-14 %SOL®-0.6 % RAD001, for the cell viability study on ependymoma. Our findings show that optimised core-shell particles exerted a significant effect for the 24 h and 5 day treatment however further studies are required to ensure toxicity of the control core-shell particles with no drug is reduced. In comparison, the 2 %PVA-14 %SOL®-0.6 %RAD001 uniaxial electrosprayed nanoparticles also exerted a toxicity effect decreasing cell viability with no toxicity observed for the control nanoparticles as well. Such pH-sensitive core-shell particles, which can degrade effectively in either acidic or neutral condition, have great potential for application in the biomedical field.

2.
Sci Total Environ ; 934: 173111, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38740219

ABSTRACT

Microplastics are ubiquitous in the aquatic environment and have emerged as a significant environmental issue due to their potential impacts on human health and the ecosystem. Current laboratory-based microplastic detection methods suffer from various drawbacks, including a lack of standardisation, limited spatial and temporal coverage, high costs, and time-consuming procedures. Consequently, there is a need for the development of in-situ techniques to detect and monitor microplastics to effectively identify and understand their sources, pathways, and behaviours. Herein, we adopt a systematic literature review method to assess the development and application of experimental and field technologies designed for the in-situ detection and monitoring of aquatic microplastics, without the need for sample preparation. Four scientific databases were searched in March 2023, resulting in a review of 62 relevant studies. These studies were classified into seven sensor categories and their working principles were discussed. The sensor classes include optical devices, digital holography, Raman spectroscopy, other spectroscopy, hyperspectral imaging, remote sensing, and other methods. We also looked at how data from these technologies are integrated with machine learning models to develop classifiers capable of accurately characterising the physical and chemical properties of microplastics and discriminating them from other particles. This review concluded that in-situ detection of microplastics in aquatic environments is feasible and can be achieved with high accuracy, even though the methods are still in the early stages of development. Nonetheless, further research is still needed to enhance the in-situ detection of microplastics. This includes exploring the possibility of combining various detection methods and developing robust machine-learning classifiers. Additionally, there is a recommendation for in-situ implementation of the reviewed methods to assess their effectiveness in detecting microplastics and identify their limitations.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
3.
Int J Adv Manuf Technol ; 130(11-12): 5627-5640, 2024.
Article in English | MEDLINE | ID: mdl-38317777

ABSTRACT

Injection moulding (IM) tools with embedded sensors can significantly improve the process efficiency and quality of the fabricated parts through real-time monitoring and control of key process parameters such as temperature, pressure and injection speed. However, traditional mould tool fabrication technologies do not enable the fabrication of complex internal geometries. Complex internal geometries are necessary for technical applications such as sensor embedding and conformal cooling which yield benefits for process control and improved cycle times. With traditional fabrication techniques, only simple bore-based sensor embedding or external sensor attachment is possible. Externally attached sensors may compromise the functionality of the injection mould tool, with limitations such as the acquired data not reflecting the processes inside the part. The design freedom of additive manufacturing (AM) enables the fabrication of complex internal geometries, making it an excellent candidate for fabricating injection mould tools with such internal geometries. Therefore, embedding sensors in a desired location for targeted monitoring of critical mould tool regions is easier to achieve with AM. This research paper focuses on embedding a wireless surface acoustic wave (SAW) temperature sensor into an injection mould tool that was additively manufactured from stainless steel 316L. The laser powder bed fusion (L-PBF) "stop-and-go" approach was applied to embed the wireless SAW sensor. After embedding, the sensor demonstrated full functionality by recording real-time temperature data, which can further enhance process control. In addition, the concept of novel print-in-place venting design, applying the same L-PBF stop-and-go approach, for vent embedding was successfully implemented, enabling the IM of defectless parts at faster injection rates, whereas cavities designed and tested without venting resulted in parts with burn marks.

4.
Eur J Pharm Biopharm ; 191: 235-246, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37714413

ABSTRACT

Everolimus (RAD001) a mammalian target of rapamycin has been hampered by poor solubility, affecting its dissolution rate, a relationship that extends to low bioavailability. Nanoparticles (NP) based on Soluplus (SOL®) and Polyvinyl alcohol (PVA) was fabricated by electrospraying (ES) for the delivery of RAD001 to improve anti-tumour efficacy. Electrospraying with established experimental conditions produced PVA-SOL®-RAD001 NP with 71 nm mean diameter, smaller particle size distribution and >90 % encapsulation efficiency. Various polymer-drug concentrations exposed to various freeze-thaw (F/T) cycles were studied for NP optimisation and to enhance its mechanical properties. The optimised NP formulation demonstrated complete encapsulation as well as a sustained and pH dependent drug release profile for in vitro release test. In addition, to specifically study the degradation profile of RAD001 and to quantify RAD001 in the fabricated NP, a new HPLC method was developed and validated. The purpose and novelty of the HPLC method was also to ensure that RAD001 can be detected at low amounts where other conventional characterisation methods are unable to detect. The developed HPLC method was accurate, precise, robust and sensitive with LOD and LOQ values of 4.149 and 12.575 µg/mL. In conclusion, the novel developed HPLC system can be applied for the quantification of different chemotherapeutic agents and the novel electrosprayed hydrogel NP is a potential drug delivery system to increase solubility and bioavailability of RAD001 in cancer therapy.

5.
Polymers (Basel) ; 15(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37688192

ABSTRACT

This work investigates real-time monitoring of extrusion-induced degradation in different grades of PLA across a range of process conditions and machine set-ups. Data on machine settings together with in-process sensor data, including temperature, pressure, and near-infrared (NIR) spectra, are used as inputs to predict the molecular weight and mechanical properties of the product. Many soft sensor approaches based on complex spectral data are essentially 'black-box' in nature, which can limit industrial acceptability. Hence, the focus here is on identifying an optimal approach to developing interpretable models while achieving high predictive accuracy and robustness across different process settings. The performance of a Recursive Feature Elimination (RFE) approach was compared to more common dimension reduction and regression approaches including Partial Least Squares (PLS), iterative PLS (i-PLS), Principal Component Regression (PCR), ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF). It is shown that for medical-grade PLA processed under moisture-controlled conditions, accurate prediction of molecular weight is possible over a wide range of process conditions and different machine settings (different nozzle types for downstream fibre spinning) with an RFE-RF algorithm. Similarly, for the prediction of yield stress, RFE-RF achieved excellent predictive performance, outperforming the other approaches in terms of simplicity, interpretability, and accuracy. The features selected by the RFE model provide important insights to the process. It was found that change in molecular weight was not an important factor affecting the mechanical properties of the PLA, which is primarily related to the pressure and temperature at the latter stages of the extrusion process. The temperature at the extruder exit was also the most important predictor of degradation of the polymer molecular weight, highlighting the importance of accurate melt temperature control in the process. RFE not only outperforms more established methods as a soft sensor method, but also has significant advantages in terms of computational efficiency, simplicity, and interpretability. RFE-based soft sensors are promising for better quality control in processing thermally sensitive polymers such as PLA, in particular demonstrating for the first time the ability to monitor molecular weight degradation during processing across various machine settings.

6.
Pharmaceutics ; 15(6)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37376095

ABSTRACT

To date, GBM remains highly resistant to therapies that have shown promising effects in other cancers. Therefore, the goal is to take down the shield that these tumours are using to protect themselves and proliferate unchecked, regardless of the advent of diverse therapies. To overcome the limitations of conventional therapy, the use of electrospun nanofibres encapsulated with either a drug or gene has been extensively researched. The aim of this intelligent biomaterial is to achieve a timely release of encapsulated therapy to exert the maximal therapeutic effect simultaneously eliminating dose-limiting toxicities and activating the innate immune response to prevent tumour recurrence. This review article is focused on the developing field of electrospinning and aims to describe the different types of electrospinning techniques in biomedical applications. Each technique describes how not all drugs or genes can be electrospun with any method; their physico-chemical properties, site of action, polymer characteristics and the desired drug or gene release rate determine the strategy used. Finally, we discuss the challenges and future perspectives associated with GBM therapy.

7.
Sensors (Basel) ; 23(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904867

ABSTRACT

Cities, and in particular those in coastal low-lying areas, are becoming increasingly susceptible to climate change, the impact of which is worsened by the tendency for population concentration in these areas. Therefore, comprehensive early warning systems are necessary to minimize harm from extreme climate events on communities. Ideally, such a system would allow all stakeholders to acquire accurate up-to-date information and respond effectively. This paper presents a systematic review that highlights the significance, potential, and future directions of 3D city modelling, early warning systems, and digital twins in the creation of technology for building climate resilience through the effective management of smart cities. In total, 68 papers were identified through the PRISMA approach. A total of 37 case studies were included, among which (n = 10) define the framework for a digital twin technology, (n = 14) involve the design of 3D virtual city models, and (n = 13) entail the generation of early warning alerts using the real-time sensor data. This review concludes that the bidirectional flow of data between a digital model and the real physical environment is an emerging concept for enhancing climate resilience. However, the research is primarily in the phase of theoretical concepts and discussion, and numerous research gaps remain regarding the implementation and use of a bidirectional data flow in a true digital twin. Nonetheless, ongoing innovative research projects are exploring the potential of digital twin technology to address the challenges faced by communities in vulnerable areas, which will hopefully lead to practical solutions for enhancing climate resilience in the near future.

8.
Sensors (Basel) ; 23(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36850913

ABSTRACT

Injection moulding (IM) is an important industrial process, known to be the most used plastic formation technique. Demand for faster cycle times and higher product customisation is driving interest in additive manufacturing (AM) as a new method for mould tool manufacturing. The use of AM offers advantages such as greater design flexibility and conformal cooling of components to reduce cycle times and increase product precision. However, shortcomings of metal additive manufacturing, such as porosity and residual stresses, introduce uncertainties about the reliability and longevity of AM tooling. The injection moulding process relies on high volumes of produced parts and a minimal amount of tool failures. This paper reviews the demands for tool condition monitoring systems for AM-manufactured mould tools; although tool failures in conventionally manufactured tooling are rare, they do occur, usually due to cracking, deflection, and channel blockages. However, due to the limitations of the AM process, metal 3D-printed mould tools are susceptible to failures due to cracking, delamination and deformation. Due to their success in other fields, acoustic emission, accelerometers and ultrasound sensors offer the greatest potential in mould tool condition monitoring. Due to the noisy machine environment, sophisticated signal processing and decision-making algorithms are required to prevent false alarms or the missing of warning signals. This review outlines the state of the art in signal decomposition and both data- and model-based approaches to determination of the current state of the tool, and how these can be employed for IM tool condition monitoring. The development of such a system would help to ensure greater industrial uptake of additive manufacturing of injection mould tooling, by increasing confidence in the technology, further improving the efficiency and productivity of the sector.

9.
Cells ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36497167

ABSTRACT

In this paper, we present a new way to assess the concentration of estradiol (E2) and Insulin Growth Factor-1 (IGF) based on the results from ultrasound scans combined with mathematical models. The IGF1 model is based on the progesterone (P4) concentration, which can be estimated with models calculating P4 level based on the size/volume of corpus luteum (CL) measured during ultrasound scans. At this moment little is known about the underlying reasons for double ovulation and silent heat occurrences. Both of these are linked to the level of IGF1: double ovulations are linked to higher IGF1 levels and and silent heat is linked to lower E2 to P4 ratio. These models can help to improve understanding of the related concentrations of E2 and IGF1. Currently, it is known that diet and genetic factors have an impact on ovulation rates and silent heat. In this study, we also examine the decline of the production of E2 in vivo by atretic follicles throughout the process of atresia. This is the first recorded quantitative description of this decline.


Subject(s)
Estradiol , Ovarian Follicle , Female , Cattle , Animals , Ovarian Follicle/diagnostic imaging , Ovulation , Corpus Luteum/diagnostic imaging , Models, Theoretical
10.
Polymers (Basel) ; 14(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35808791

ABSTRACT

In fused deposition modelling (FDM) based on the selected raster pattern, the developed internal thermal residual stresses can vary considerably affecting the mechanical properties and leading to distinct part distortions. This phenomenon is more pronounced in semi-crystalline than amorphous polymers due to crystallisation. Hence, this study focuses on the simulation of the FDM process of a semi-crystalline polymer (polypropylene) with raster patterns such as line (90°/90°), line (0°/90°), zigzag (45°/45°), zigzag (45°/-45°), and concentric from Cura (slicing software). The simulation provides visualisation and prediction of the internally developed thermal residual stresses and resulting warpage with printing time and temperature. The sample with a line (90°/90°) raster pattern is considered as the reference sample in order to compare the relative levels of residual stress and warpage in the other printed/simulated samples. Among the considered raster patterns, the concentric pattern displays the lowest amount of warpage (5.5% decrease) along with a significant drop in residual stress of 21%. While the sample with a zigzag (45°/-45°) pattern showed the highest increase of 37% in warpage along with a decrease of 9.8% in residual stresses. The sample with a zigzag (45°/45°) pattern, exhibited a considerable increase of 16.2% in warpage with a significant increase of 31% in residual stresses. Finally, the sample with a line (0°/90°) raster pattern displayed an increase of 24% increase in warpage with an increase of 6.6% in residual stresses.

11.
Sensors (Basel) ; 22(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458820

ABSTRACT

PLA (polylactide) is a bioresorbable polymer used in implantable medical and drug delivery devices. Like other bioresorbable polymers, PLA needs to be processed carefully to avoid degradation. In this work we combine in-process temperature, pressure, and NIR spectroscopy measurements with multivariate regression methods for prediction of the mechanical strength of an extruded PLA product. The potential to use such a method as an intelligent sensor for real-time quality analysis is evaluated based on regulatory guidelines for the medical device industry. It is shown that for the predictions to be robust to processing at different times and to slight changes in the processing conditions, the fusion of both NIR and conventional process sensor data is required. Partial least squares (PLS), which is the established 'soft sensing' method in the industry, performs the best of the linear methods but demonstrates poor reliability over the full range of processing conditions. Conversely, both random forest (RF) and support vector regression (SVR) show excellent performance for all criteria when used with a prior principal component (PC) dimension reduction step. While linear methods currently dominate for soft sensing of mixture concentrations in highly conservative, regulated industries such as the medical device industry, this work indicates that nonlinear methods may outperform them in the prediction of mechanical properties from complex physicochemical sensor data. The nonlinear methods show the potential to meet industrial standards for robustness, despite the relatively small amount of training data typically available in high-value material processing.


Subject(s)
Absorbable Implants , Polymers , Least-Squares Analysis , Polyesters , Polymers/chemistry , Reproducibility of Results
12.
Pharmaceutics ; 13(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34575508

ABSTRACT

In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing technology in the pharmaceutical industry, due to its various advantages over other fabrication routes for drug delivery systems. After the introduction of the 'quality by design' (QbD) approach by the Food and Drug Administration (FDA), many research studies have focused on implementing process analytical technology (PAT), including near-infrared (NIR), Raman, and UV-Vis, coupled with various machine learning algorithms, to monitor and control the HME process in real time. This review gives a comprehensive overview of the application of machine learning algorithms for HME processes, with a focus on pharmaceutical HME applications. The main current challenges in the application of machine learning algorithms for pharmaceutical processes are discussed, with potential future directions for the industry.

13.
Sensors (Basel) ; 21(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34372430

ABSTRACT

Injection moulding is an extremely important industrial process, being one of the most commonly-used plastic formation techniques. However, the industry faces many current challenges associated with demands for greater product customisation, higher precision and, most urgently, a shift towards more sustainable materials and processing. Accurate real-time sensing of the material and part properties during processing is key to achieving rapid process optimisation and set-up, reducing down-times, and reducing waste material and energy in the production of defective products. While most commercial processes rely on point measurements of pressure and temperature, ultrasound transducers represent a non-invasive and non-destructive source of rich information on the mould, the cavity and the polymer melt, and its morphology, which affect critical quality parameters such as shrinkage and warpage. In this paper the relationship between polymer properties and the propagation of ultrasonic waves is described and the application of ultrasound measurements in injection moulding is evaluated. The principles and operation of both conventional and high temperature ultrasound transducers (HTUTs) are reviewed together with their impact on improving the efficiency of the injection moulding process. The benefits and challenges associated with the recent development of sol-gel methods for HTUT fabrication are described together with a synopsis of further research and development needed to ensure a greater industrial uptake of ultrasonic sensing in injection moulding.


Subject(s)
Plastics , Polymers , Temperature , Ultrasonography
14.
Int J Mol Sci ; 22(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063056

ABSTRACT

In this paper, newly discovered mechanisms of atresia and cell death processes in bovine ovarian follicles are investigated. For this purpose the mRNA expression of receptor interacting protein kinases 1 and 3 (RIPK1 and RIPK3) of the granulosa and theca cells derived from healthy and atretic follicles are studied. The follicles were assigned as either healthy or atretic based on the estradiol to progesterone ratio. A statistically significant difference was recorded for the mRNA expression of a RIPK1 and RIPK3 between granulosa cells from healthy and atretic follicles. To further investigate this result a systems biology approach was used. The genes playing roles in necroptosis, apoptosis and atresia were chosen and a network was created based on human genes annotated by the IMEx database in Cytoscape to identify hubs and bottle-necks. Moreover, correlation networks were built in the Cluepedia plug-in. The networks were created separately for terms describing apoptosis and programmed cell death. We demonstrate that necroptosis (RIPK-dependent cell death pathway) is an alternative mechanism responsible for death of bovine granulosa and theca cells. We conclude that both apoptosis and necroptosis occur in the granulosa cells of dominant follicles undergoing luteinisation and in the theca cells from newly selected follicles.


Subject(s)
Granulosa Cells/cytology , Models, Biological , Systems Biology , Theca Cells/cytology , Animals , Apoptosis/genetics , Cattle , Cell Death , Female , Gene Ontology , Gene Regulatory Networks , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , Protein Interaction Maps , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Theca Cells/metabolism
15.
ACS Biomater Sci Eng ; 7(4): 1278-1301, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33729744

ABSTRACT

Graphene oxide (GO) has broad potential in the biomedical sector. The oxygen-abundant nature of GO means the material is hydrophilic and readily dispersible in water. GO has also been known to improve cell proliferation, drug loading, and antimicrobial properties of composites. Electrospun composites likewise have great potential for biomedical applications because they are generally biocompatible and bioresorbable, possess low immune rejection risk, and can mimic the structure of the extracellular matrix. In the current review, GO-containing electrospun composites for tissue engineering applications are described in detail. In addition, electrospun GO-containing materials for their use in drug and gene delivery, wound healing, and biomaterials/medical devices have been examined. Good biocompatibility and anionic-exchange properties of GO make it an ideal candidate for drug and gene delivery systems. Drug/gene delivery applications for electrospun GO composites are described with a number of examples. Various systems using electrospun GO-containing therapeutics have been compared for their potential uses in cancer therapy. Micro- to nanosized electrospun fibers for wound healing applications and antimicrobial applications are explained in detail. Applications of various GO-containing electrospun composite materials for medical device applications are listed. It is concluded that the electrospun GO materials will find a broad range of biomedical applications such as cardiac patches, medical device coatings, sensors, and triboelectric nanogenerators for motion sensing and biosensing.


Subject(s)
Graphite , Biocompatible Materials , Tissue Engineering , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...