Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Environ Sci Process Impacts ; 24(12): 2249-2262, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36129094

ABSTRACT

Parathion, a once commonly used pesticide known for its potential toxicity, can follow several degradation mechanisms in the environment. Given the species stability and persistence, parathion can be washed into waterways from rain, and therefore an atomistic perspective of the hydrolysis of parathion, and its byproduct paraoxon, is required in order to understand its fate in the environment. Experimental studies have determined that pH plays an important role in the calculated hydrolysis rate constants of parathion degradation. In this work, the degradation of parathion into either paraoxon or 4-nitrophenol, and the degradation of paraoxon to 4-nitrophenol are explored through density functional theory using the M06-2X functional. How the level of basicity affects the reaction mechanism is explored through two different hydroxide/water environments. Our calculations support the anticipated mechanisms determined by previous experimental work that the formation of 4-nitrophenol is the predominant pathway in hydrolysis of parathion.


Subject(s)
Parathion , Parathion/metabolism , Paraoxon/metabolism , Hydrolysis , Density Functional Theory
2.
J Phys Chem A ; 123(16): 3504-3509, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30920835

ABSTRACT

In order to minimize unintentional detonation, munitions researchers have focused on the development of chemical compounds that are insensitive to external stimuli while maintaining their effectiveness. Although these compounds, known as high-performance insensitive munition compounds, are promising in terms of potency and stability, their environmental impacts have either not been fully understood or are yet to be investigated. In the present research, we have performed a quantum chemical investigation on electronic structures and properties of an insensitive munition compound 4,6-bis(nitroimino)-1,3,5-triazinan-2-one (DNAM). The density functional theory using the B3LYP and M06-2X functionals and MP2 methodology were used for geometry optimization of various tautomeric forms of DNAM. The effect of bulk water solution was evaluated using the conductor-like polarizable continuum model and the density-based solvation model. Ionization potentials, electron affinities, redox properties, and p Ka values were also computed and compared with the available experimental data. These physical and chemical properties of DNAM have been discussed with regard to the varying tautomeric forms in which DNAM can exist.

3.
J Chem Theory Comput ; 13(7): 3185-3197, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28489372

ABSTRACT

Psi4 is an ab initio electronic structure program providing methods such as Hartree-Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods. Conversion of the top-level code to a Python module means that Psi4 can now be used in complex workflows alongside other Python tools. Several new features have been added with the aid of libraries providing easy access to techniques such as density fitting, Cholesky decomposition, and Laplace denominators. The build system has been completely rewritten to simplify interoperability with independent, reusable software components for quantum chemistry. Finally, a wide range of new theoretical methods and analyses have been added to the code base, including functional-group and open-shell symmetry adapted perturbation theory, density-fitted coupled cluster with frozen natural orbitals, orbital-optimized perturbation and coupled-cluster methods (e.g., OO-MP2 and OO-LCCD), density-fitted multiconfigurational self-consistent field, density cumulant functional theory, algebraic-diagrammatic construction excited states, improvements to the geometry optimizer, and the "X2C" approach to relativistic corrections, among many other improvements.

4.
J Chem Theory Comput ; 12(1): 209-22, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26626230

ABSTRACT

We have investigated the performance of the reduced-scaling coupled cluster method based on projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and orbital specific virtuals (OSVs) for the prediction of linear response properties. These methods introduce different degrees of controllable sparsity in the ground-state and perturbed coupled cluster wave functions, leading to localization errors in properties such as dynamic polarizabilities and specific optical rotations. Using a series of chiral test compounds, we find that the inherent costs associated with computing response properties are significantly greater than those for determining the ground-state energy. As the dimensionality of the molecular system increases-from (pseudo)linear structures, such as fluoroalkanes, to cagelike structures, such as ß-pinene-the crossover point between canonical-orbital and localized-orbital algorithms increases substantially. Furthermore, both the OSV and PNO methods provide greater reduction in cost (as measured by the size of the double-excitation space) than do PAOs, and PNOs provide the greatest level of sparsity for the systems examined here. Single-excitation truncation induces much larger errors than corresponding doubles truncation due to the fact that the first-order contribution to the one-electron perturbed wave function appears in the singles amplitudes. Both the PNO and OSV methods perform reasonably well for frequency-dependent polarizabilities provided appropriate thresholds are used for the occupation-number and weak-pair cutoffs on which each method depends. Specific rotations, however, are very sensitive to wave function truncation, to the extent that aggressive thresholds can yield the incorrect sign of the rotation, due to the delicate balance of positive and negative wave function contributions to the mixed electric-/magnetic-field response.

5.
J Chem Phys ; 142(15): 154101, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25903860

ABSTRACT

We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related ß, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL signal but a weak circular dichroism signal.

6.
Phys Chem Chem Phys ; 17(22): 14284-96, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25531433

ABSTRACT

In this work we present the first implementation of the incremental scheme for coupled cluster linear-response frequency-dependent dipole polarizabilities. The implementation is fully automated and makes use of the domain-specific basis set approach. The accuracy of the approach is determined on the basis of a test suite of 47 molecules and small clusters. The local approximation in the coupled cluster singles and doubles polarizability exhibits a mean error of 0.02% and a standard deviation of 0.32% when using a third-order incremental expansion. With the proposed approach, it is possible to compute polarizabilities with larger basis sets compared to the canonical implementation and thus it is possible to obtain higher total accuracy. The incremental scheme yields the smallest errors for weakly-bound and quasi-linear systems, while two- and three-dimensional (cage-like) structures exhibit somewhat larger errors as compared to the full test set.

7.
Phys Chem Chem Phys ; 14(21): 7830-6, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22544083

ABSTRACT

The impact of orbital localization on the efficiency and accuracy of the optimized-orbital coupled cluster model is examined for the prediction of chiroptical properties, in particular optical rotation. The specific rotations of several test cases-(P)-[4]triangulane, (S)-1-phenylethanol, and chiral conformers of 1-fluoropentane, heptane, and nonane-were computed using an approach in which localization is enforced throughout the orbital optimization and subsequent linear response computation. This method provides a robust local-correlation scheme for future production-level implementation. Although the cross-over point between the canonical and localized coupled cluster approach lies at larger molecules than for ground-state energies, the scheme presented should still provide reduced scaling sufficient to investigate much larger molecules than are presently accessible.

SELECTION OF CITATIONS
SEARCH DETAIL
...