Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5967, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749108

ABSTRACT

The goal of oncologic surgeries is complete tumor resection, yet positive margins are frequently found postoperatively using gold standard H&E-stained histology methods. Frozen section analysis is sometimes performed for rapid intraoperative margin evaluation, albeit with known inaccuracies. Here, we introduce a label-free histological imaging method based on an ultraviolet photoacoustic remote sensing and scattering microscope, combined with unsupervised deep learning using a cycle-consistent generative adversarial network for realistic virtual staining. Unstained tissues are scanned at rates of up to 7 mins/cm2, at resolution equivalent to 400x digital histopathology. Quantitative validation suggests strong concordance with conventional histology in benign and malignant prostate and breast tissues. In diagnostic utility studies we demonstrate a mean sensitivity and specificity of 0.96 and 0.91 in breast specimens, and respectively 0.87 and 0.94 in prostate specimens. We also find virtual stain quality is preferred (P = 0.03) compared to frozen section analysis in a blinded survey of pathologists.


Subject(s)
Deep Learning , Microscopy , Male , Humans , Remote Sensing Technology , Spectrum Analysis , Coloring Agents
2.
Opt Express ; 31(6): 10136-10149, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157568

ABSTRACT

There is an unmet need for fast virtual histology technologies that exhibit histological realism and can scan large sections of fresh tissue within intraoperative time-frames. Ultraviolet photoacoustic remote sensing microscopy (UV-PARS) is an emerging imaging modality capable of producing virtual histology images that show good concordance to conventional histology stains. However, a UV-PARS scanning system that can perform rapid intraoperative imaging over mm-scale fields-of-view at fine resolution (<500 nm) has yet to be demonstrated. In this work, we present a UV-PARS system which utilizes voice-coil stage scanning to demonstrate finely resolved images for 2×2 mm2 areas at 500 nm sampling resolution in 1.33 minutes and coarsely resolved images for 4×4 mm2 areas at 900 nm sampling resolution in 2.5 minutes. The results of this work demonstrate the speed and resolution capabilities of the UV-PARS voice-coil system and further develop the potential for UV-PARS microscopy to be employed in a clinical setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...