Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Process Res Dev ; 24(6): 1112-1123, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32587453

ABSTRACT

The liquid-phase hydrogenation of the aromatic cyanohydrin mandelonitrile (MN, C6H5CH(OH)CN) over a carbon-supported Pd catalyst to produce the primary amine phenethylamine (PEA, C6H5CH2CH2NH2) is investigated with respect to the transition from operation in single-batch mode to repeat-batch mode. While a single-batch reaction returns a complete mass balance, product analysis alongside mass balance measurements for a six-addition repeat-batch procedure shows an attenuation in the rate of product formation and an incomplete mass balance from the fourth addition onward. This scenario potentially hinders possible commercial operation of the phenethylamine synthesis process, so it is investigated further. With reference to a previously reported reaction scheme, the prospects of sustained catalytic performance are examined in terms of acid concentration, stirrer agitation rate, catalyst mass, and hydrogen availability. Gas-liquid mass transfer coefficient measurements indicate efficient gas → liquid transfer kinetics within the experimental constraints of the Henry's law limitation on hydrogen solubility in the process solvent (methanol). Deviations from the optimized product selectivity are attributed to mass transport constraints, specifically the H2(solv) → 2H(ads) transition, which is ultimately restrained by the availability of H2(solv). Finally, in an attempt to better understand the deactivation pathways, inelastic neutron scattering measurements on a comparable industrial-grade catalyst operated in an analogous reaction in fed-batch mode indicate the presence of an oligomeric overlayer postreaction. This overlayer is thought to be formed via oligomerization of hydroxyimine or imine species via specific pathways that are identified within a postulated global reaction scheme.

2.
RSC Adv ; 9(45): 26116-26125, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-35531026

ABSTRACT

A carbon supported Pd catalyst is used in the liquid phase hydrogenation of the aromatic cyanohydrin mandelonitrile (C6H5CH(OH)CH2CN) to afford the primary amine phenethylamine (C6H5CH2CH2NH2). Employing a batch reactor, the desired primary amine is produced in 87% selectivity at reaction completion. Detection of the by-product 2-amino-1-phenylethanol (C6H5CH(OH)CH2NH2) accounts for the remaining 13% and closes the mass balance. The reaction mechanism is investigated, with a role for both hydrogenation and hydrogenolysis processes established.

3.
RSC Adv ; 8(51): 29392-29399, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-35548000

ABSTRACT

The selective production of primary amines is a problem that plagues heterogeneously catalysed nitrile hydrogenation reactions. Whilst the target amine tyramine (HOC6H4CH2CH2NH2) is biochemically available through the action of enzymes, synthetic routes to this species are not widely reported. Here, a heterogeneously catalysed method is proposed that utilises a Pd/C catalyst to effect the selective hydrogenation of 4-hydroxybenzyl cyanide within a three-phase reactor. The aforementioned selectivity issues are overcome by adjustment of various experimental parameters (hydrogen supply, agitation rate, temperature, use of an auxiliary agent) that result in improved catalytic performance, such that the desired tyramine salt (tyramine hydrogen sulphate) can be produced in quantitative yield. Accordingly, through consideration of the interconnectivity of hydrogenation and hydrogenolysis processes, a selective synthetic strategy is achieved with the findings suitable for extension to other substrates of this nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...