Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38405833

ABSTRACT

The intricate molecular environment of the native membrane profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergent-like molecules that disrupt and remove this vital local membrane context. This severely impedes our ability to quantitatively decipher the local molecular context and comprehend its regulatory role in the structure, function, and biogenesis of MPs. Using a library of membrane-active polymers we have developed a platform for the high-throughput analysis of the membrane proteome. The platform enables near-complete spatially resolved extraction of target MPs directly from their endogenous membranes into native nanodiscs that maintain the local membrane context. We accompany this advancement with an open-access quantitative database that provides the most efficient extraction conditions of 2065 unique mammalian MPs. Our method enables rapid and near-complete extraction and purification of target MPs directly from their endogenous organellar membranes at physiological expression levels while maintaining the nanoscale local membrane environment. Going beyond the plasma membrane proteome, our platform enables extraction from any target organellar membrane including the endoplasmic reticulum, mitochondria, lysosome, Golgi, and even transient organelles such as the autophagosome. To further validate this platform we took several independent MPs and demonstrated how our resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, taking two synaptic vesicle MPs, we show how the database can be extended to capture multiprotein complexes between overexpressed MPs. We expect these publicly available resources to empower researchers across disciplines to capture membrane 'nano-scoops' containing a target MP efficiently and interface with structural, functional, and other bioanalytical approaches. We demonstrate an example of this by combining our extraction platform with single-molecule TIRF imaging to demonstrate how it can enable rapid determination of homo-oligomeric states of target MPs in native cell membranes.

2.
Nat Methods ; 20(6): 891-897, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37106230

ABSTRACT

Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.


Subject(s)
Lipids , Membrane Proteins , Mass Spectrometry/methods , Biological Transport , Lipids/chemistry , Membrane Proteins/chemistry , Lipid Bilayers/chemistry
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723052

ABSTRACT

Gram-positive bacteria assemble pili (fimbriae) on their surfaces to adhere to host tissues and to promote polymicrobial interactions. These hair-like structures, although very thin (1 to 5 nm), exhibit impressive tensile strengths because their protein components (pilins) are covalently crosslinked together via lysine-isopeptide bonds by pilus-specific sortase enzymes. While atomic structures of isolated pilins have been determined, how they are joined together by sortases and how these interpilin crosslinks stabilize pilus structure are poorly understood. Using a reconstituted pilus assembly system and hybrid structural biology methods, we elucidated the solution structure and dynamics of the crosslinked interface that is repeated to build the prototypical SpaA pilus from Corynebacterium diphtheriae We show that sortase-catalyzed introduction of a K190-T494 isopeptide bond between adjacent SpaA pilins causes them to form a rigid interface in which the LPLTG sorting signal is inserted into a large binding groove. Cellular and quantitative kinetic measurements of the crosslinking reaction shed light onto the mechanism of pilus biogenesis. We propose that the pilus-specific sortase in C. diphtheriae uses a latch mechanism to select K190 on SpaA for crosslinking in which the sorting signal is partially transferred from the enzyme to a binding groove in SpaA in order to facilitate catalysis. This process is facilitated by a conserved loop in SpaA, which after crosslinking forms a stabilizing latch that covers the K190-T494 isopeptide bond. General features of the structure and sortase-catalyzed assembly mechanism of the SpaA pilus are likely conserved in Gram-positive bacteria.


Subject(s)
Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Corynebacterium diphtheriae/physiology , Cysteine Endopeptidases/metabolism , Fimbriae, Bacterial/physiology , Catalysis , Fimbriae Proteins/metabolism , Lysine/metabolism , Protein Binding
4.
Bioconjug Chem ; 31(6): 1624-1634, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32396336

ABSTRACT

Site-specifically modified protein bioconjugates have important applications in biology, chemistry, and medicine. Functionalizing specific protein side chains with enzymes using mild reaction conditions is of significant interest, but remains challenging. Recently, the lysine-isopeptide bond forming activity of the sortase enzyme that builds surface pili in Corynebacterium diphtheriae (CdSrtA) has been reconstituted in vitro. A mutationally activated form of CdSrtA was shown to be a promising bioconjugating enzyme that can attach Leu-Pro-Leu-Thr-Gly peptide fluorophores to a specific lysine residue within the N-terminal domain of the SpaA protein (NSpaA), enabling the labeling of target proteins that are fused to NSpaA. Here we present a detailed analysis of the CdSrtA catalyzed protein labeling reaction. We show that the first step in catalysis is rate limiting, which is the formation of the CdSrtA-peptide thioacyl intermediate that subsequently reacts with a lysine ε-amine in NSpaA. This intermediate is surprisingly stable, limiting spurious proteolysis of the peptide substrate. We report the discovery of a new enzyme variant (CdSrtAΔ) that has significantly improved transpeptidation activity, because it completely lacks an inhibitory polypeptide appendage ("lid") that normally masks the active site. We show that the presence of the lid primarily impairs formation of the thioacyl intermediate and not the recognition of the NSpaA substrate. Quantitative measurements reveal that CdSrtAΔ generates its cross-linked product with a catalytic turnover number of 1.4 ± 0.004 h-1 and that it has apparent KM values of 0.16 ± 0.04 and 1.6 ± 0.3 mM for its NSpaA and peptide substrates, respectively. CdSrtAΔ is 7-fold more active than previously studied variants, labeling >90% of NSpaA with peptide within 6 h. The results of this study further improve the utility of CdSrtA as a protein labeling tool and provide insight into the enzyme catalyzed reaction that underpins protein labeling and pilus biogenesis.


Subject(s)
Corynebacterium diphtheriae/enzymology , Cysteine Endopeptidases/chemistry , Lysine/chemistry , Peptides/chemistry , Biocatalysis , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Kinetics , Mutation , Protein Domains
5.
ACS Synth Biol ; 9(2): 381-391, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31922719

ABSTRACT

The functions of enzymes can be strongly affected by their higher-order spatial arrangements. In this study we combine multiple new technologies-designer protein cages and sortase-based enzymatic attachments between proteins-as a novel platform for organizing multiple enzymes (of one or more types) in specified configurations. As a scaffold we employ a previously characterized 24-subunit designed protein cage whose termini are outwardly exposed for attachment. As a first-use case, we test the attachment of two cellulase enzymes known to act synergistically in cellulose degradation. We show that, after endowing the termini of the cage subunits with a short "sort-tag" sequence (LPXTG) and the opposing termini of the cellulase enzymes with a short polyglycine sequence tag, addition of sortase covalently attaches the enzymes to the cage with good reactivity and high copy number. The doubly modified cages show enhanced activity in a cellulose degradation assay compared to enzymes in solution, and compared to a combination of singly modified cages. These new engineering strategies could be broadly useful in the development of enzymatic material and synthetic biology applications.


Subject(s)
Cellulase/metabolism , Nanocapsules/chemistry , Protein Engineering , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellulase/genetics , Cellulose/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Peptides/chemistry , Peptides/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...