Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 14024, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32820204

ABSTRACT

Debris flows can grow greatly in size and hazardous potential by eroding bed and bank material, but effective hazard assessment and mitigation is currently hampered by limited understanding of erosion and deposition dynamics. We have collected high-resolution pre- and post-flow topography for 6 debris flows over a 3 km long unconsolidated reach of the Illgraben channel in the Swiss Alps with drone-based photogrammetry. We show that the spatio-temporal patterns of erosion and deposition in debris-flow torrents are highly variable and dynamic. Check dams strongly control the spatial patterns of erosion and deposition. We identify a memory effect where erosion is strong at locations of strong deposition during previous flows and vice versa. Large sediment inputs from subcatchments initially result in new channel erosion through the subcatchment deposits and simultaneous upstream deposition, likely as a result of backwater effects. It is generally believed that erosion increases with debris-flow magnitude, but we show that there is a limit to debris-flow bulking set by channel geometry. These findings provide key guidelines for flow volume forecasting, emphasizing the importance of memory effects and the need to resolve both erosion and deposition in predictive models.

2.
J Geophys Res Planets ; 124(8): 2246-2271, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31763111

ABSTRACT

Understanding the initial and flow conditions of contemporary flows in Martian gullies, generally believed to be triggered and fluidized by CO2 sublimation, is crucial for deciphering climate conditions needed to trigger and sustain them. We employ the RAMMS (RApid Mass Movement Simulation) debris flow and avalanche model to back calculate initial and flow conditions of recent flows in three gullies in Hale crater. We infer minimum release depths of 1.0-1.5 m and initial release volumes of 100-200 m3. Entrainment leads to final flow volumes that are ∼2.5-5.5 times larger than initially released, and entrainment is found necessary to match the observed flow deposits. Simulated mean cross-channel flow velocities decrease from 3-4 m/s to ∼1 m/s from release area to flow terminus, while flow depths generally decrease from 0.5-1 to 0.1-0.2 m. The mean cross-channel erosion depth and deposition thicknesses are ∼0.1-0.3 m. Back-calculated dry-Coulomb friction ranges from 0.1 to 0.25 and viscous-turbulent friction between 100 and 200 m/s2, which are values similar to those of granular debris flows on Earth. These results suggest that recent flows in gullies are fluidized to a similar degree as are granular debris flows on Earth. Using a novel model for mass flow fluidization by CO2 sublimation we are able to show that under Martian atmospheric conditions very small volumetric fractions of CO2 of ≪1% within mass flows may indeed yield sufficiently large gas fluxes to cause fluidization and enhance flow mobility.

SELECTION OF CITATIONS
SEARCH DETAIL
...