Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 119(11-12): 2745-2755, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31696316

ABSTRACT

PURPOSE: Transcutaneous electrical nerve stimulation (TENS) can reduce acute and chronic pain. Unilateral fatigue can produce discomfort in the affected limb and force and activation deficits in contralateral non-exercised muscles. TENS-induced local pain analgesia effects on non-local fatigue performance are unknown. Hence, the aim of the study was to determine if TENS-induced pain suppression would augment force output during a fatiguing protocol in the treated and contralateral muscles. METHODS: Three experiments were integrated for this article. Following pre-tests, each experiment involved 20 min of TENS, sham, or a control condition on the dominant quadriceps. Then either the TENS-treated quadriceps (TENS_Treated) or the contralateral quadriceps (TENS_Contra) was tested. In a third experiment, the TENS and sham conditions involved two\; 100-s isometric maximal voluntary contractions (MVC) (30-s recovery) followed by testing of the contralateral quadriceps (TENS_Contra-Fatigue). Testing involved single knee extensors (KE) MVCs (pre- and post-test) and a post-test 30% MVC to task failure. RESULTS: The TENS-treated study induced greater (p = 0.03; 11.0%) time to KE (treated leg) failure versus control. The TENS_Contra-Fatigue induced significant (p = 0.04; 11.7%) and near-significant (p = 0.1; 7.1%) greater time to contralateral KE failure versus sham and control, respectively. There was a 14.5% (p = 0.02) higher fatigue index with the TENS (36.2 ± 10.1%) versus sham (31.6 ± 10.6%) conditions in the second fatigue intervention set (treated leg). There was no significant post-fatigue KE fatigue interaction with the TENS_Contra. CONCLUSIONS: Unilateral TENS application to the dominant KE prolonged time to failure in the treated and contralateral KE suggesting a global pain modulatory response.


Subject(s)
Isometric Contraction/physiology , Knee Joint/physiology , Knee/physiopathology , Muscle Fatigue/physiology , Adult , Electromyography/methods , Female , Humans , Male , Muscle Strength/physiology , Quadriceps Muscle/physiology , Transcutaneous Electric Nerve Stimulation/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...