Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nitric Oxide ; 127: 44-53, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35872082

ABSTRACT

Prostate cancer is a leading cause of cancer death in men. Inflammation and overexpression of inducible nitric oxide synthase (NOS2) have been implicated in prostate carcinogenesis. We aimed to explore the hypothesis that nitric oxide NO exerts pro-tumorigenic effects on prostate cells at physiologically relevant levels contributing to carcinogenesis. We investigated the impact of acute exposure of normal immortalised prostate cells (RWPE-1) to NO on cell proliferation and activation of DNA damage repair pathways. Furthermore we investigated the long term effects of chronic NO exposure on RWPE-1 cell migration and invasion potential and hallmarks of transformation. Our results demonstrate that NO induces DNA damage as indicated by γH2AX foci and p53 activation resulting in a G1/S phase block and activation of 53BP1 DNA damage repair protein. Long term adaption to NO results in increased migration and invasion potential, acquisition of anchorage independent growth and increased resistance to chemotherapy. This was recapitulated in PC3 and DU145 prostate cancer cells which upon chronic exposure to NO displayed increased cell migration, colony formation and increased resistance to chemotherapeutics. These findings indicate that NO may play a key role in the development of prostate cancer and the acquisition of an aggressive metastatic phenotype.


Subject(s)
Prostate , Prostatic Neoplasms , Carcinogenesis , Cell Line, Tumor , Humans , Male , Nitric Oxide/metabolism , Phenotype , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
2.
Front Oncol ; 11: 658489, 2021.
Article in English | MEDLINE | ID: mdl-34055625

ABSTRACT

Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.

3.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321789

ABSTRACT

Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.


Subject(s)
Neoplasms/metabolism , Nitric Oxide/metabolism , Signal Transduction , Animals , Humans , Immunotherapy/methods , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...