Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 8945, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903655

ABSTRACT

Phosphorylation of the histone protein H2AX to form γ-H2AX foci directly represents DNA double-strand break formation. Traditional γ-H2AX detection involves counting individual foci within individual nuclei. The novelty of this work is the application of a time-resolved fluorescence assay using dissociation-enhanced lanthanide fluorescence immunoassay for quantitative measurements of γ-H2AX. For comparison, standard fluorescence detection was employed and analyzed either by bulk fluorescent measurements or by direct foci counting using BioTek Spot Count algorithm and Gen 5 software. Etoposide induced DNA damage in A549 carcinoma cells was compared across all test platforms. Time resolved fluorescence detection of europium as a chelated complex enabled quantitative measurement of γ-H2AX foci with nanomolar resolution. Comparative bulk fluorescent signals achieved only micromolar sensitivity. Lanthanide based immunodetection of γ-H2AX offers superior detection and a user-friendly workflow. These approaches have the potential to improve screening of compounds that either enhance DNA damage or protect against its deleterious effects.


Subject(s)
Algorithms , DNA Breaks, Double-Stranded , Europium/chemistry , Fluorescence , Histones/metabolism , A549 Cells , Etoposide/pharmacology , Europium/pharmacology , Humans , Microscopy, Fluorescence
2.
Biodes Res ; 2020: 9429650, 2020.
Article in English | MEDLINE | ID: mdl-37849898

ABSTRACT

In the last decade, the unprecedented simplicity and flexibility of the CRISPR-Cas system has made it the dominant transformative tool in gene and genome editing. However, this democratized technology is both a boon and a bane, for which we have yet to understand the full potential to investigate and rewrite genomes (also named "genome biodesign"). Rapid CRISPR advances in a range of applications in basic research, agriculture, and clinical applications pose new risks and raise several biosecurity concerns. In such a fast-moving field of research, we emphasize the importance of properly communicating the quality and accuracy of results and recommend new reporting requirements for results derived from next-generation genome engineering.

3.
ACS Appl Mater Interfaces ; 11(8): 7782-7791, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30682243

ABSTRACT

Long-term antimicrobial therapies are necessary to treat infections caused by virulent intracellular pathogens, including biothreat agents. Current treatment plans include injectable therapeutics given multiple times daily over a period for up to 8 weeks. Here, we present a metal-organic framework (MOF), zeolitic imidazolate framework-8 (ZIF-8), as a robust platform to support the sustained release of ceftazidime, an important antimicrobial agent for many critical bacterial infections. Detailed material characterization confirms the successful encapsulation of ceftazidime within the ZIF-8 matrix, indicating sustained drug release for up to a week. The antibacterial properties of ceftazidime@ZIF-8 particles were confirmed against Escherichia coli, chosen here as a representative of Gram-negative bacteria infection model in a proof-of-concept study. Further, we showed that this material system is compatible with macrophage and lung epithelial cell lines, relevant targets for antibacterial therapy for pulmonary and intracellular infections. A promising methodology to enhance the treatment of intracellular infections is to deliver the antibiotic cargo intracellularly. Importantly, this is the first study to unequivocally demonstrate direct MOF particle internalization using confocal microscopy via 3D reconstructions of z-stacks, taking advantage of the intrinsic emission properties of ZIF-8. This is an important development as it circumvents the need to use any staining dyes and addresses current methodology limitations concerning false impression of cargo uptake in the event of the carrier particle breakdown within biological media.


Subject(s)
Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , A549 Cells , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Ceftazidime/chemistry , Ceftazidime/metabolism , Ceftazidime/pharmacology , Cell Survival/drug effects , Escherichia coli/drug effects , Humans , Imidazoles/chemistry , Mice , Microscopy, Confocal , RAW 264.7 Cells , Zeolites/chemistry
4.
Methods Mol Biol ; 1530: 99-108, 2017.
Article in English | MEDLINE | ID: mdl-28150197

ABSTRACT

The purpose of this chapter is to detail the formulation and characterization of a magnetically-targeted drug delivery vehicle, termed nano-in-microparticles (NIMs), for pulmonary drug delivery. Currently, chemotherapeutics and antibiotics are delivered systemically and result in whole body side-effects. NIMs are formulated with superparamagnetic iron oxide nanoparticles, termed SPIONs, making these particles targetable to specific lung regions using a strong external magnet. Additionally, these particles can be formulated to contain any drug or therapeutic agent, such that a therapeutic dose can be delivered to a specific tissue location using the SPIONs-magnet interaction. Finally, these particles are in the appropriate size range for pulmonary delivery, making NIMs therapeutics feasibly inhalable.To generate these particles a solution containing lactose, SPIONs, and a microsphere dye (used as a drug surrogate) is spray-dried using a laboratory-scale spray dryer. The resulting dry powder microparticles (NIMs) can be characterized for their size and morphological properties by various techniques that are presented in this chapter.The utility of NIMs as a magnetic field-dependent targeting delivery platform in an in vivo mouse model has been demonstrated, and a protocol detailing the intratracheal delivery of NIMs dry powder is included as a separate chapter in this book.


Subject(s)
Drug Carriers , Drug Delivery Systems , Lung/drug effects , Lung/metabolism , Magnetite Nanoparticles , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Ferric Compounds/chemistry , Humans , Magnetite Nanoparticles/chemistry , Particle Size
5.
Methods Mol Biol ; 1530: 369-378, 2017.
Article in English | MEDLINE | ID: mdl-28150215

ABSTRACT

This chapter details the intratracheal delivery of dry powder microparticles termed nano-in-microparticles (NIMs) for the purpose of in vivo targeted pulmonary drug delivery. The dry powder NIMs technology improves on previous inhaled chemotherapy platforms designed as liquid formulations. Dry powder microparticles were created through the process of spray drying; a protocol detailing the formulation of NIMs dry powder is included as a separate chapter in this book. Dry powder NIMs containing fluorescent nanoparticles and magnetically-responsive superparamagnetic iron oxide nanoparticles are intratracheally delivered (insufflated) in the presence of a magnetic field and targeted to the left lung of mice. The targeting efficiency of dry powder NIMs is compared to the targeting efficiency of liquid NIMs to demonstrate the superiority of dry power targeting platforms. Targeting is assessed using fluorescence associated with NIMs detected in the mouse trachea, left lung, and right lung by an in vivo imaging system.


Subject(s)
Drug Carriers , Drug Delivery Systems , Lung , Magnetite Nanoparticles , Administration, Inhalation , Animals , Intubation, Intratracheal , Lung/drug effects , Lung/metabolism , Magnetite Nanoparticles/chemistry , Mice
6.
PLoS One ; 11(12): e0169107, 2016.
Article in English | MEDLINE | ID: mdl-28036366

ABSTRACT

Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Symporters/genetics , Tomography, Emission-Computed, Single-Photon/methods , Tomography, X-Ray Computed/methods , A549 Cells , Animals , Cell Line, Tumor , Disease Models, Animal , Iodides/metabolism , Lung Neoplasms/genetics , Male , Mice , Mice, Nude , Neoplasm Transplantation , Sodium Pertechnetate Tc 99m/metabolism , Symporters/metabolism , Transplantation, Heterologous , Tumor Burden/genetics
7.
PLoS Pathog ; 12(5): e1005614, 2016 05.
Article in English | MEDLINE | ID: mdl-27153120

ABSTRACT

Bacille Calmette-Guérin (BCG) is currently the only approved vaccine against tuberculosis (TB) and is administered in over 150 countries worldwide. Despite its widespread use, the vaccine has a variable protective efficacy of 0-80%, with the lowest efficacy rates in tropical regions where TB is most prevalent. This variability is partially due to ubiquitous environmental mycobacteria (EM) found in soil and water sources, with high EM prevalence coinciding with areas of poor vaccine efficacy. In an effort to elucidate the mechanisms underlying EM interference with BCG vaccine efficacy, we exposed mice chronically to Mycobacterium avium (M. avium), a specific EM, by two different routes, the oral and intradermal route, to mimic human exposure. After intradermal BCG immunization in mice exposed to oral M. avium, we saw a significant decrease in the pro-inflammatory cytokine IFN-γ, and an increase in T regulatory cells and the immunosuppressive cytokine IL-10 compared to naïve BCG-vaccinated animals. To circumvent the immunosuppressive effect of oral M. avium exposure, we vaccinated mice by the pulmonary route with BCG. Inhaled BCG immunization rescued IFN-γ levels and increased CD4 and CD8 T cell recruitment into airways in M. avium-presensitized mice. In contrast, intradermal BCG vaccination was ineffective at T cell recruitment into the airway. Pulmonary BCG vaccination proved protective against Mtb infection regardless of previous oral M. avium exposure, compared to intradermal BCG immunization. In conclusion, our data indicate that vaccination against TB by the pulmonary route increases BCG vaccine efficacy by avoiding the immunosuppressive interference generated by chronic oral exposure to EM. This has implications in TB-burdened countries where drug resistance is on the rise and health care options are limited due to economic considerations. A successful vaccine against TB is necessary in these areas as it is both effective and economical.


Subject(s)
BCG Vaccine/administration & dosage , Environmental Exposure/adverse effects , Immune Tolerance/immunology , Mycobacterium avium/immunology , Tuberculosis, Pulmonary/immunology , Animals , BCG Vaccine/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Immunophenotyping , Mice , Mice, Inbred C57BL
8.
Mol Pharm ; 10(10): 3574-81, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23964796

ABSTRACT

We propose the use of novel inhalable nano-in-microparticles (NIMs) for site-specific pulmonary drug delivery. Conventional lung cancer therapy has failed to achieve therapeutic drug concentrations at tumor sites without causing adverse effects in healthy tissue. To increase targeted drug delivery near lung tumors, we have prepared and characterized a magnetically responsive dry powder vehicle containing doxorubicin. A suspension of lactose, doxorubicin and Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) were spray dried. NIMs were characterized for their size and morphological properties by various techniques: dynamic light scattering (DLS) and laser diffraction (LS) to determine hydrodynamic size of the SPIONs and the NIMs, respectively; next generation cascade impactor (NGI) to determine the aerodynamic diameter and fine particle fraction (FPF); scanning (SEM) and transmission (TEM) electron microscopy to analyze particle surface morphology; electron dispersive X-ray spectroscopy (EDS) to determine iron loading in NIMs; inductively coupled plasma atomic emission spectroscopy (ICP-AES) and superconducting quantum interference device (SQUID) to determine Fe3O4 content in the microparticles; and high performance liquid chromatography (HPLC) to determine doxorubicin loading in the vehicle. NIMs deposition and retention near a magnetic field was performed using a proof-of-concept cylindrical tube to mimic the conducting airway deposition. The hydrodynamic size and zeta potential of SPIONs were 56 nm and -49 mV, respectively. The hydrodynamic and aerodynamic NIM diameters were 1.6 µm and 3.27±1.69 µm, respectively. SEM micrographs reveal spherical particles with rough surface morphology. TEM and focused ion beam-SEM micrographs corroborate the porous nature of NIMs, and surface localization of SPIONs. An in vitro tracheal mimic study demonstrates more than twice the spatial deposition and retention of NIMs, compared to a liquid suspension, in regions under the influence of a strong magnetic gradient. We report the novel formulation of an inhaled and magnetically responsive NIM drug delivery vehicle. This vehicle is capable of being loaded with one or more chemotherapeutic agents, with future translational ability to be targeted to lung tumors using an external magnetic field.


Subject(s)
Drug Delivery Systems/methods , Ferric Compounds/chemistry , Magnetics , Nanoparticles/chemistry , Administration, Inhalation , Lung/metabolism , Nanoparticles/ultrastructure , Particle Size , Trachea/metabolism
9.
J Appl Phys ; 109(7): 7B536-7B5363, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21559088

ABSTRACT

We report on the successful preparation and characterization of fluorescent magnetic core∕shell Fe(3)O(4)∕ZnSe nanoparticles (NPs) with a spherical shape by organometallic synthesis. The 7 nm core∕3 nm shell NPs show good magnetic and photoluminescence (PL) responses. The observed PL emission∕excitation spectra are shifted to shorter wavelengths, compared to a reference ZnSe NP sample. A dramatic reduction of PL quantum yield is also observed. The temperature dependence of the magnetization for the core∕shell NPs shows the characteristic features of two coexisting and interacting magnetic (Fe(3)O(4)) and nonmagnetic (ZnSe) phases. Compared to a reference Fe(3)O(4) NP sample, the room-temperature Néel relaxation time in core∕shell NPs is three times longer.

SELECTION OF CITATIONS
SEARCH DETAIL
...