Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 596: 120223, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33508341

ABSTRACT

RALA is a cationic amphipathic peptide which has shown great promise as an efficient, multifunctional delivery system for the delivery of nucleic acids. Rational peptide design was utilised in this study to understand the essential amino acids required for delivery and if any improvements to the RALA peptide could be made. Six amphipathic peptides were synthesised with strategic sequences and amino acid substitutions to reduce peptide sequence, while maintaining the functional characteristics of RALA including amphipathicity, alpha-helicity and pH responsiveness for endosomal escape. Data demonstrated that all six peptides complexed pEGFP-N1 to produce cationic nanoparticles <200 nm in diameter, but not all peptides resulted in successful transfection; indicating the influence of peptide design for cellular uptake and endosomal escape. Pep2, produced nanoparticles with similar characteristics and transfection efficiency to the parent peptide, RALA. However, Pep2 had issues with toxicity and a lack of pH-responsive alpha-helcity. Therefore, RALA remains the superior sequence for non-toxic gene delivery.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Gene Transfer Techniques , Genetic Therapy , Transfection
2.
J Control Release ; 330: 1288-1299, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33227336

ABSTRACT

The design of a non-viral gene delivery system that can release a functional nucleic acid at the intracellular destination site is an exciting but also challenging proposition. The ideal gene delivery vector must be non-toxic, non-immunogenic, overcome extra- and intra-cellular barriers, protect the nucleic acid cargo from degradation with stability over a range of temperatures. A new 15 amino acid linear peptide termed CHAT was designed in this study with the goal of delivering DNA with high efficiency into cells in vitro and tissues in vivo. Rational design involved incorporation of key amino acids including arginine for nucleic acid complexation and cellular uptake, tryptophan to enhance hydrophobic interaction with cell membranes, histidine to facilitate endosomal escape and cysteine for stability and controlled cargo release. Six linear peptides were synthesised with strategic sequences and amino acid substitutions. Data demonstrated that all six peptides complexed pDNA to produce cationic nanoparticles less than 200 nm in diameter, but not all peptides resulted in successful transfection; indicating the influence of peptide design for endosomal escape. Peptide 4, now termed CHAT, was non-cytotoxic, traversed the plasma membrane of breast and prostate cancer cell lines, and elicited reporter-gene expression following intra-tumoural and intravenous delivery in vivo. CHAT presents an exciting new peptide for the delivery of nucleic acid therapeutics.


Subject(s)
Cell-Penetrating Peptides , Gene Transfer Techniques , Genetic Therapy , Plasmids , Transfection
3.
Int J Pharm ; 564: 207-213, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30999049

ABSTRACT

The past fifteen years have witnessed a resurgence of interest in vaginal ring technologies for drug delivery applications, mostly driven by the impetus for development of vaginally-administered antiretroviral microbicides to help reduce the high acquisition rates for human immunodeficiency virus (HIV) among Sub-Saharan African women. Currently, the lead candidate microbicide is a 28-day silicone elastomer vaginal ring releasing dapivirine (Ring-004), an experimental non-nucleoside reverse transcriptase inhibitor. The ring was tested in two pivotal Phase III clinical studies in 2016 and is currently undergoing review by the European Medicines Agency. Recently, we described a new type of silicone elastomer vaginal ring offering sustained release of the protein molecule 5P12-RANTES, a potent experimental chemokine analogue that potently blocks the HIV CCR5 coreceptor. Building on our previous work, here we report the preclinical development of a new combination vaginal ring that offers sustained release of both 5P12-RANTES and dapivirine, in which the 5P12-RANTES is incorporated into an exposed core within the ring body and the dapivirine in the sheath. In this way, in vitro release of dapivirine matches closely that for Ring-004. Also, we report the pharmacokinetic testing of this combination ring formulation in sheep, where vaginal concentrations of both drugs are maintained over 28 days at levels potentially useful for preventing HIV infection in women.


Subject(s)
Anti-HIV Agents/administration & dosage , Chemokines, CC/administration & dosage , Contraceptive Devices, Female , HIV Infections/prevention & control , Pyrimidines/administration & dosage , Animals , Anti-HIV Agents/pharmacokinetics , Chemokines, CC/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Drug Combinations , Female , Pyrimidines/pharmacokinetics , Sheep , Vagina/metabolism
4.
J Control Release ; 298: 1-11, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30731150

ABSTRACT

Antiretroviral-releasing vaginal rings are at the forefront of ongoing efforts to develop microbicide-based strategies for prevention of heterosexual transmission of the human immunodeficiency virus (HIV). However, traditional ring designs are generally only useful for vaginal administration of relatively potent, lipophilic, and small molecular weight drug molecules that have sufficient permeability in the non-biodegradable silicone elastomer or thermoplastic polymers. Here, we report a novel, easy-to-manufacture 'exposed-core' vaginal ring that provides sustained release of the protein microbicide candidate 5P12-RANTES, an experimental chemokine analogue that potently blocks the HIV CCR5 coreceptor. In vitro release, mechanical, and stability testing demonstrated the utility and practicality of this novel ring design. In a sheep pharmacokinetic model, a ring containing two »-length excipient-modified silicone elastomer cores - each containing lyophilised 5P12-RANTES and exposed to the external environment by two large windows - provided sustained concentrations of 5P12-RANTES in vaginal fluid and vaginal tissue between 10 and 10,000 ng/g over 28days, at least 50 and up to 50,000 times the reported in vitro IC50 value.


Subject(s)
CCR5 Receptor Antagonists/administration & dosage , Chemokines, CC/administration & dosage , Contraceptive Devices, Female , Drug Delivery Systems , Administration, Intravaginal , Animals , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , CCR5 Receptor Antagonists/pharmacokinetics , Chemokines, CC/pharmacokinetics , Delayed-Action Preparations , Female , HIV Infections/prevention & control , Humans , Inhibitory Concentration 50 , Sheep
5.
Cancer Nanotechnol ; 9(1): 5, 2018.
Article in English | MEDLINE | ID: mdl-29899810

ABSTRACT

BACKGROUND: Recent approvals of gene therapies by the FDA and the EMA for treatment of inherited disorders have further opened the door for assessment of nucleic acid pharmaceuticals for clinical usage. Arising from the presence of damaged or inappropriate DNA, cancer is a condition particularly suitable for genetic intervention. The RALA peptide has been shown to be a potent non-viral delivery platform for nucleic acids. This study examines the use of RALA to deliver a plasmid encoding inducible nitric oxide synthase (iNOS) as an anti-cancer treatment. METHODS: The physiochemical properties of the RALA/DNA nanoparticles were characterized via dynamic light scattering and transmission electron microscopy. The nanoparticles were labelled with fluorophores and tracked over time using confocal microscopy with orthogonal sections to determine cellular location. In vitro studies were employed to determine functionality of the nanoparticles both for pEGFP-N1 and CMV-iNOS. Nanoparticles were injected intravenously into C57/BL6 mice with blood and serum samples analysed for immune response. PC3-luc2M cells were injected into the left ventricle of SCID mice followed by treatment with RALA/CMV-iNOS nanoparticles to evaluate the tumour response in a metastatic model of prostate cancer. RESULTS: Functional cationic nanoparticles were produced with gene expression in PC-3 prostate cancer cells. Furthermore, repeated administrations of RALA/DNA nanoparticles into immunocompetent mice did not produce any immunological response: neutralization of the vector or release of inflammatory mediators. RALA/CMV-iNOS reduced the clonogenicity of PC-3 cells in vitro, and in an in vivo model of prostate cancer metastasis, systemically delivered RALA/CMV-iNOS significantly improved the survival of mice. CONCLUSION: These studies further validate RALA as a genetic cargo delivery vehicle and iNOS as a potent therapy for the treatment of cancer.

6.
Eur J Pharm Biopharm ; 127: 288-297, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29510205

ABSTRACT

Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 µg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer.


Subject(s)
DNA/administration & dosage , DNA/chemistry , Peptides/chemistry , Uterine Cervical Neoplasms/drug therapy , Vaccines, DNA/administration & dosage , Vaccines, DNA/chemistry , Animals , Biodegradable Plastics/chemistry , Cell Line , Drug Delivery Systems/methods , Female , Gene Transfer Techniques , Genetic Therapy/methods , Injections, Intramuscular/methods , Mice , Mice, Inbred C57BL , Microinjections/methods , Nanoparticles/chemistry , Needles , Plasmids/administration & dosage , Skin/metabolism , Swine , Transfection/methods , Vaccination/methods
7.
Article in English | MEDLINE | ID: mdl-28784672

ABSTRACT

5P12-RANTES, a chemokine analogue that potently blocks the HIV CCR5 coreceptor, is being developed as both a vaginal and rectal microbicide for prevention of sexual transmission of HIV. Here, we report the first pharmacokinetic data for 5P12-RANTES following single-dose vaginal gel administration in sheep. Aqueous gel formulations containing low (1.24-mg/ml), intermediate (6.18-mg/ml), and high (32.0-mg/ml; suspension-type gel) concentrations of 5P12-RANTES were assessed via rheology, syringeability, and in vitro release testing. Following vaginal gel administration to sheep, 5P12-RANTES concentrations were measured in vaginal fluid, vaginal tissue, and serum over a 96-h period. All gels showed non-Newtonian pseudoplastic behavior, with the high-concentration gels exhibiting a greater viscosity and cohesive structure than the intermediate- and low-concentration gels. In in vitro release testing, >90% 5P12-RANTES was released from the low- and intermediate-concentration gels after 72 h. For the high-concentration gel, ∼50% 5P12-RANTES was detected, attributed to protein denaturation during lyophilization and/or subsequent solvation of the protein within the gel matrix. In sheep, 5P12-RANTES concentrations in vaginal fluid, vaginal tissue, and serum increased in a dose-dependent manner. The highest concentrations were measured in vaginal fluid (105 to 107 ng/ml), followed by vaginal tissue (104 to 106 ng/ml). Both of these concentration ranges are several orders of magnitude above the reported half-maximal inhibitory concentrations. The lowest concentration was measured in serum (<102 ng/ml). The 5P12-RANTES pharmacokinetic data are similar to those reported previously for other candidate microbicides. These data, coupled with 5P12-RANTES's potency at picomolar concentrations, its strong barrier to resistance, and the full protection that it was observed to provide in a rhesus macaque vaginal challenge model, support the continued development of 5P12-RANTES as a microbicide.


Subject(s)
Anti-HIV Agents/pharmacokinetics , CCR5 Receptor Antagonists/pharmacokinetics , Chemokines, CC/pharmacokinetics , Vaginal Creams, Foams, and Jellies/pharmacokinetics , Administration, Intravaginal , Animals , Female , HIV Infections/drug therapy , HIV-1/drug effects , Sheep
8.
Mol Ther Nucleic Acids ; 6: 249-258, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28325291

ABSTRACT

This study aimed to determine the therapeutic benefit of a nanoparticular formulation for the delivery of inducible nitric oxide synthase (iNOS) gene therapy in a model of breast cancer metastasis. Nanoparticles comprising a cationic peptide vector, RALA, and plasmid DNA were formulated and characterized using a range of physiochemical analyses. Nanoparticles complexed using iNOS plasmids and RALA approximated 60 nm in diameter with a charge of 25 mV. A vector neutralization assay, performed to determine the immunogenicity of nanoparticles in immunocompetent C57BL/6 mice, revealed that no vector neutralization was evident. Nanoparticles harboring iNOS plasmids (constitutively active cytomegalovirus [CMV]-driven or transcriptionally regulated human osteocalcin [hOC]-driven) evoked iNOS protein expression and nitrite accumulation and impaired clonogenicity in the highly aggressive MDA-MB-231 human breast cancer model. Micrometastases of MDA-MB-231-luc-D3H1 cells were established in female BALB/c SCID mice by intracardiac delivery. Nanoparticulate RALA/CMV-iNOS or RALA/hOC-iNOS increased median survival in mice bearing micrometastases by 27% compared with controls and also provoked elevated blood nitrite levels. Additionally, iNOS gene therapy sensitized MDA-MB-231-luc-D3H1 tumors to docetaxel treatment. Studies demonstrated that systemically delivered RALA-iNOS nanoparticles have therapeutic potential for the treatment of metastatic breast cancer. Furthermore, detection of nitrite levels in the blood serves as a reliable biomarker of treatment.

9.
Nanomedicine ; 13(3): 921-932, 2017 04.
Article in English | MEDLINE | ID: mdl-27979747

ABSTRACT

HPV subtypes (16, 18) are associated with the development of cervical cancer, with oncoproteins E6 and E7 responsible for pathogenesis. The goal of this study was to evaluate our 'smart system' technology platform for DNA vaccination against cervical cancer. The vaccination platform brings together two main components; a peptide RALA which condenses DNA into cationic nanoparticles (NPs), and a polymeric polyvinylpyrrolidone (PVP) microneedle (MN) patch for cutaneous delivery of the loaded NPs. RALA condensed E6/E7 DNA into NPs not exceeding 100nm in diameter, and afforded the DNA protection from degradation in PVP. Sera from mice vaccinated with MN/RALA-E6/E7 were richer in E6/E7-specific IgGs, displayed a greater T-cell-mediated TC-1 cytotoxicity and contained more IFN-γ than sera from mice that received NPs intramuscularly. More importantly, MN/RALA-E6/E7 delayed TC-1 tumor initiation in a prophylactic model, and slowed tumor growth in a therapeutic model of vaccination, and was more potent than intramuscular vaccination.


Subject(s)
Cancer Vaccines/administration & dosage , Gene Transfer Techniques/instrumentation , Oligopeptides/chemistry , Papillomavirus Infections/prevention & control , Povidone/chemistry , Uterine Cervical Neoplasms/prevention & control , Vaccination/instrumentation , Vaccines, DNA/administration & dosage , Administration, Cutaneous , Animals , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line , Cervix Uteri/immunology , Cervix Uteri/pathology , Cervix Uteri/virology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Female , Human papillomavirus 16/genetics , Human papillomavirus 16/immunology , Human papillomavirus 18/genetics , Human papillomavirus 18/immunology , Humans , Immunity, Humoral , Mice, Inbred C57BL , Needles , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Repressor Proteins/genetics , Repressor Proteins/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use
10.
Hum Vaccin Immunother ; 13(1): 50-62, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27846370

ABSTRACT

DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application.


Subject(s)
Drug Carriers , Drug Delivery Systems/instrumentation , Needles , Polymers , Vaccination/instrumentation , Vaccines, DNA/administration & dosage , Animals , Male , Mice, Inbred C57BL , Vaccines, DNA/pharmacokinetics
11.
Mol Pharm ; 13(4): 1217-28, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26954700

ABSTRACT

Bisphosphonates (BPs) are a class of bone resorptive drug with a high affinity for the hydroxyapatite structure of bone matrices that are used for the treatment of osteoporosis. However, clinical application is limited by a common toxicity, BP-related osteonecrosis of the jaw. There is emerging evidence that BPs possess anticancer potential, but exploitation of these antiproliferative properties is limited by their toxicities. We previously reported the utility of a cationic amphipathic fusogenic peptide, RALA, to traffic anionic nucleic acids into various cell types in the form of cationic nanoparticles. We hypothesized that complexation with RALA could similarly be used to conceal a BP's hydroxyapatite affinity, and to enhance bioavailability, thereby improving anticancer efficacy. Incubation of RALA with alendronate, etidronate, risedronate, or zoledronate provoked spontaneous electrostatic formation of cationic nanoparticles that did not exceed 100 nm in diameter and that were stable over a range of temperatures and for up to 6 h. The nanoparticles demonstrated a pH responsiveness, possibly indicative of a conformational change, that could facilitate release of the BP cargo in the endosomal environment. RALA/BP nanoparticles were more potent anticancer agents than their free BP counterparts in assays investigating the viability of PC3 prostate cancer and MDA-MB-231 breast cancer cells. Moreover, RALA complexation potentiated the tumor growth delay activity of alendronate in a PC3 xenograft model of prostate cancer. Taken together, these findings further validate the use of BPs as repurposed anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Diphosphonates/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Peptides/pharmacology , Alendronate/chemistry , Alendronate/pharmacology , Alendronate/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Xenograft Model Antitumor Assays , Zoledronic Acid
12.
J Control Release ; 226: 238-47, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26883753

ABSTRACT

Microneedle technology provides the opportunity for the delivery of DNA therapeutics by a non-invasive, patient acceptable route. To deliver DNA successfully requires consideration of both extra and intracellular biological barriers. In this study we present a novel two tier platform; i) a peptide delivery system, termed RALA, that is able to wrap the DNA into nanoparticles, protect the DNA from degradation, enter cells, disrupt endosomes and deliver the DNA to the nucleus of cells ii) a microneedle (MN) patch that will house the nanoparticles within the polymer matrix, breach the skin's stratum corneum barrier and dissolve upon contact with skin interstitial fluid thus releasing the nanoparticles into the skin. Our data demonstrates that the RALA is essential for preventing DNA degradation within the poly(vinylpyrrolidone) (PVP) polymer matrix. In fact the RALA/DNA nanoparticles (NPs) retained functionality when in the MN arrays after 28days and over a range of temperatures. Furthermore the physical strength and structure of the MNs was not compromised when loaded with the NPs. Finally we demonstrated the effectiveness of our MN-NP platform in vitro and in vivo, with systemic gene expression in highly vascularised regions. Taken together this 'smart-system' technology could be applied to a wide range of genetic therapies.


Subject(s)
Cell-Penetrating Peptides/chemistry , DNA/administration & dosage , Gene Transfer Techniques/instrumentation , Nanoparticles/chemistry , Needles , Plasmids/administration & dosage , Administration, Cutaneous , Animals , Cell Line , Cell-Penetrating Peptides/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , Female , Gene Expression , Humans , Mice, Inbred C57BL , Nanoparticles/metabolism , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Povidone/chemistry , Povidone/metabolism , Skin/metabolism , Swine
13.
Int J Pharm ; 500(1-2): 144-53, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26802497

ABSTRACT

Designer biopolymers (DBPs) represent state of the art genetically engineered biomacromolecules designed to condense plasmid DNA, and overcome intra- and extra- cellular barriers to gene delivery. Three DBPs were synthesized, each with the tumor molecular targeting peptide-1 (TMTP-1) motif to specifically target metastases. Each DBP was complexed with a pEGFP-N1 reporter plasmid to permit physiochemical and biological assay analysis. Results indicated that two of the biopolymers (RMHT and RM3GT) effectively condensed pEGFP-N1 into cationic nanoparticles <100 nm and were capable of transfecting PC-3 metastatic prostate cancer cells. Conversely the anionic RMGT DBP nanoparticles could not transfect PC-3 cells. RMHT and RM3GT nanoparticles were stable in the presence of serum and protected the cargo from degradation. Additionally it was concluded that cell viability could recover post-transfection with these DBPs, which were less toxic than the commercially available transfection reagent Lipofectamine(®) 2000. With both DBPs, a higher transfection efficacy was observed in PC-3 cells than in the moderately metastatic, DU145, and normal, PNT2-C2, cell lines. Blocking of the TMTP-1 receptors inhibited gene transfer indicating internalization via this receptor. In conclusion RMHT and RM3GT are fully functional DBPs that address major obstacles to gene delivery and target metastatic cells expressing the TMTP-1 receptor.


Subject(s)
Biopolymers/administration & dosage , DNA/administration & dosage , Gene Transfer Techniques , Nanoparticles/administration & dosage , Oligopeptides/metabolism , Biopolymers/chemistry , Cell Line, Tumor , Cell Survival/drug effects , DNA/chemistry , Green Fluorescent Proteins/genetics , Humans , Male , Nanoparticles/chemistry , Plasmids , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
14.
J Xray Sci Technol ; 23(1): 65-82, 2015.
Article in English | MEDLINE | ID: mdl-25567408

ABSTRACT

X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Models, Biological , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Humans , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
15.
J Control Release ; 189: 141-9, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-24995949

ABSTRACT

The design of a non-viral gene delivery vehicle capable of delivering and releasing a functional nucleic acid cargo intracellularly remains a formidable challenge. For systemic gene therapy to be successful a delivery vehicle is required that protects the nucleic acid cargo from enzymatic degradation, extravasates from the vasculature, traverses the cell membrane, disrupts the endosomal vesicles and unloads the cargo at its destination site, namely the nucleus for the purposes of gene delivery. This manuscript reports the extensive investigation of a novel amphipathic peptide composed of repeating RALA units capable of overcoming the biological barriers to gene delivery both in vitro and in vivo. Our data demonstrates the spontaneous self-assembly of cationic DNA-loaded nanoparticles when the peptide is complexed with pDNA. Nanoparticles were <100nm, were stable in the presence of serum and were fusogenic in nature, with increased peptide α-helicity at a lower pH. Nanoparticles proved to be non-cytotoxic, readily traversed the plasma membrane of both cancer and fibroblast cell lines and elicited reporter-gene expression following intravenous delivery in vivo. The results of this study indicate that RALA presents an exciting delivery platform for the systemic delivery of nucleic acid therapeutics.


Subject(s)
DNA/administration & dosage , Nanoparticles/administration & dosage , Peptides/administration & dosage , Animals , Cell Line , Cell Line, Tumor , Circular Dichroism , DNA/chemistry , Erythrocytes/drug effects , Female , Gene Transfer Techniques , Hemolysis/drug effects , Humans , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Mice, Inbred C57BL , Nanoparticles/chemistry , Particle Size , Peptides/chemistry , Plasmids , Sheep
16.
J Acoust Soc Am ; 124(4): 2042-52, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19062844

ABSTRACT

Sound reproduction via a noncontact surface mapping technique has great potential for sound archives, aiming to digitize content from early sound recordings such as wax cylinders, which may otherwise be "unplayable" with a stylus. If the noncontact techniques are to be considered a viable solution for sound archivists, a method for quantifying the quality of the reproduced signal needs to be developed. In this study, a specially produced test cylinder recording, encoded with sinusoids, provides the basis for the first quantitative analysis of signal reproduction from the noncontact full surface mapping method. The sampling and resolution of the measurement system are considered with respect to the requirements for digital archiving of cylinder recordings. Two different methods of audio signal estimation from a discrete groove cross section are described and rated in terms of signal-to-noise ratio and total harmonic distortion. Noncontact and stylus methods of sound reproduction are then compared using the same test cylinder. It is shown that noncontact methods appear to have distinct advantages over stylus reproduction, in terms of reduced harmonic distortion and lower frequency modulation.


Subject(s)
Acoustics , Models, Theoretical , Signal Processing, Computer-Assisted , Sound Spectrography , Sound , Acoustics/instrumentation , Archives , Computer Simulation , Equipment Design , Fourier Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...