Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Brain Sci ; 12(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36138987

ABSTRACT

The title of this Special Issue is: "Underlying Mechanisms and Neurorehabilitation of Gait after Stroke" [...].

2.
Brain Sci ; 12(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36009118

ABSTRACT

The central nervous system (CNS) control of human gait is complex, including descending cortical control, affective ascending neural pathways, interhemispheric communication, whole brain networks of functional connectivity, and neural interactions between the brain and spinal cord. Many important studies were conducted in the past, which administered gait training using externally targeted methods such as treadmill, weight support, over-ground gait coordination training, functional electrical stimulation, bracing, and walking aids. Though the phenomenon of CNS activity-dependent plasticity has served as a basis for more recently developed gait training methods, neurorehabilitation gait training has yet to be precisely focused and quantified according to the CNS source of gait control. Therefore, we offer the following hypotheses to the field: Hypothesis 1. Gait neurorehabilitation after stroke will move forward in important ways if research studies include brain structural and functional characteristics as measures of response to treatment. Hypothesis 2. Individuals with persistent gait dyscoordination after stroke will achieve greater recovery in response to interventions that incorporate the current and emerging knowledge of CNS function by directly engaging CNS plasticity and pairing it with peripherally directed, plasticity-based motor learning interventions. These hypotheses are justified by the increase in the study of neural control of motor function, with emerging research beginning to elucidate neural factors that drive recovery. Some are developing new measures of brain function. A number of groups have developed and are sharing sophisticated, curated databases containing brain images and brain signal data, as well as other types of measures and signal processing methods for data analysis. It will be to the great advantage of stroke survivors if the results of the current state-of-the-art and emerging neural function research can be applied to the development of new gait training interventions.

3.
Brain Sci ; 12(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009168

ABSTRACT

With discoveries of brain and spinal cord mechanisms that control gait, and disrupt gait coordination after disease or injury, and that respond to motor training for those with neurological disease or injury, there is greater ability to construct more efficacious gait coordination training paradigms. Therefore, it is critical in these contemporary times, to use the most precise, sensitive, homogeneous (i.e., domain-specific), and comprehensive measures available to assess gait coordination, dyscoordination, and changes in response to treatment. Gait coordination is defined as the simultaneous performance of the spatial and temporal components of gait. While kinematic gait measures are considered the gold standard, the equipment and analysis cost and time preclude their use in most clinics. At the same time, observational gait coordination scales can be considered. Two independent groups identified the Gait Assessment and Intervention Tool (G.A.I.T.) as the most suitable scale for both research and clinical practice, compared to other observational gait scales, since it has been proven to be valid, reliable, sensitive to change, homogeneous, and comprehensive. The G.A.I.T. has shown strong reliability, validity, and sensitive precision for those with stroke or multiple sclerosis (MS). The G.A.I.T. has been translated into four languages (English, Spanish, Taiwanese, and Portuguese (translation is complete, but not yet published)), and is in use in at least 10 countries. As a contribution to the field, and in view of the evidence for continued usefulness and international use for the G.A.I.T. measure, we have provided this update, as well as an open access copy of the measure for use in clinical practice and research, as well as directions for administering the G.A.I.T.

4.
Brain Sci ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34827497

ABSTRACT

Background/Problem: Standard neurorehabilitation and gait training has not proved effective in restoring normal gait coordination for many stroke survivors. Rather, persistent gait dyscoordination occurs, with associated poor function, and progressively deteriorating quality of life. One difficulty is the array of symptoms exhibited by stroke survivors with gait deficits. Some researchers have addressed lower limb weakness following stroke with exercises designed to strengthen muscles, with the expectation of improving gait. However, gait dyscoordination in many stroke survivors appears to result from more than straightforward muscle weakness. PURPOSE: Thus, the purpose of this case study is to report results of long-duration gait coordination training in an individual with initial good strength, but poor gait swing phase hip/knee and ankle coordination. METHODS: Mr. X was enrolled at >6 months after a left hemisphere ischemic stroke. Gait deficits included a 'stiff-legged gait' characterized by the absence of hip and knee flexion during right mid-swing, despite the fact that he showed good initial strength in right lower limb quadriceps, hamstrings, and ankle dorsiflexors. Treatment was provided 4 times/week for 1.5 h, for 12 weeks. The combined treatment included the following: motor learning exercises designed for coordination training of the lower limb; functional electrical stimulation (FES) assisted practice; weight-supported coordination practice; and over-ground and treadmill walking. The FES was used as an adjunct to enhance muscle response during motor learning and prior to volitional recovery of motor control. Weight-supported treadmill training was administered to titrate weight and pressure applied at the joints and to the plantar foot surface during stance phase and pre-swing phase of the involved limb. Later in the protocol, treadmill training was administered to improve speed of movement during the gait cycle. Response to treatment was assessed through an array of impairment, functional mobility, and life role participation measures. RESULTS: At post-treatment, Mr. X exhibited some recovery of hip, knee, and ankle coordination during swing phase according to kinematic measures, and the stiff-legged gait was resolved. Muscle strength measures remained essentially constant throughout the study. The modified Ashworth scale showed improved knee extensor tone from baseline of 1 to normal (0) at post-treatment. Gait coordination overall improved by 12 points according to the Gait Assessment and Intervention Tool, Six Minute Walk Test improved by 532', and the Stroke Impact Scale improved by 12 points, including changes in daily activities; mobility; and meaningful activities. DISCUSSION: Through the combined use of motor learning exercises, FES, weight-support, and treadmill training, coordination of the right lower limb improved sufficiently to exhibit a more normal swing phase, reducing the probability of falls, and subsequent downwardly spiraling dysfunction. The recovery of lower limb coordination during swing phase illustrates what is possible when strength is sufficient and when coordination training is targeted in a carefully titrated, highly incrementalized manner. Conclusions/Contribution to the Field: This case study contributes to the literature in several ways: (1) illustrates combined interventions for gait training and response to treatment; (2) provides supporting case evidence of relationships among knee flexion coordination, swing phase coordination, functional mobility, and quality of life; (3) illustrates that strength is necessary, but not sufficient to restore coordinated gait swing phase after stroke in some stroke survivors; and (4) provides details regarding coordination training and progression of gait training treatment for stroke survivors.

5.
Neurorehabil Neural Repair ; 33(7): 523-537, 2019 07.
Article in English | MEDLINE | ID: mdl-31131743

ABSTRACT

Background. Effective treatment methods are needed for moderate/severely impairment chronic stroke. Objective. The questions were the following: (1) Is there need for long-dose therapy or is there a mid-treatment plateau? (2) Are the observed gains from the prior-studied protocol retained after treatment? Methods. Single-blind, stratified/randomized design, with 3 applied technology treatment groups, combined with motor learning, for long-duration treatment (300 hours of treatment). Measures were Arm Motor Ability Test time and coordination-function (AMAT-T, AMAT-F, respectively), acquired pre-/posttreatment and 3-month follow-up (3moF/U); Fugl-Meyer (FM), acquired similarly with addition of mid-treatment. Findings. There was no group difference in treatment response (P ≥ .16), therefore data were combined for remaining analyses (n = 31; except for FM pre/mid/post, n = 36). Pre-to-Mid-treatment and Mid-to-Posttreatment gains of FM were statistically and clinically significant (P < .0001; 4.7 points and P < .001; 5.1 points, respectively), indicating no plateau at 150 hours and benefit of second half of treatment. From baseline to 3moF/U: (1) FM gains were twice the clinically significant benchmark, (2) AMAT-F gains were greater than clinically significant benchmark, and (3) there was statistically significant improvement in FM (P < .0001); AMAT-F (P < .0001); AMAT-T (P < .0001). These gains indicate retained clinically and statistically significant gains at 3moFU. From posttreatment to 3moF/U, gains on FM were maintained. There were statistically significant gains in AMAT-F (P = .0379) and AMAT-T P = .003.


Subject(s)
Motor Skills/physiology , Outcome and Process Assessment, Health Care , Recovery of Function/physiology , Robotics , Stroke Rehabilitation/methods , Stroke/physiopathology , Stroke/therapy , Upper Extremity/physiopathology , Adult , Aged , Chronic Disease , Female , Humans , Male , Middle Aged , Severity of Illness Index , Single-Blind Method , Young Adult
6.
PLoS One ; 14(4): e0215311, 2019.
Article in English | MEDLINE | ID: mdl-30978249

ABSTRACT

Individuals with stroke are often left with persistent upper limb dysfunction, even after treatment with traditional rehabilitation methods. The purpose of this retrospective study is to demonstrate feasibility of the implementation of an upper limb myoelectric orthosis for the treatment of persistent moderate upper limb impairment following stroke (>6 months). METHODS: Nine patients (>6 months post stroke) participated in treatment at an outpatient Occupational Therapy department utilizing the MyoPro myoelectric orthotic device. Group therapy was provided at a frequency of 1-2 sessions per week (60-90 minutes per session). Patients were instructed to perform training with the device at home on non-therapy days and to continue with use of the device after completion of the group training period. Outcome measures included Fugl-Meyer Upper Limb Assessment (FM) and modified Ashworth Scale (MAS). RESULTS: Patients demonstrated clinically important and statistically significant improvement of 9.0±4.8 points (p = 0.0005) on a measure of motor control impairment (FM) during participation in group training. It was feasible to administer the training in a group setting with the MyoPro, using a 1:4 ratio (therapist to patients). Muscle tone improved for muscles with MAS >1.5 at baseline. DISCUSSION: Myoelectric orthosis use is feasible in a group clinic setting and in home-use structure for chronic stroke survivors. Clinically important motor control gains were observed on FM in 7 of 9 patients who participated in training.


Subject(s)
Arm , Orthotic Devices , Stroke Rehabilitation/instrumentation , Stroke/physiopathology , Aged , Arm/physiopathology , Electromyography/instrumentation , Electromyography/statistics & numerical data , Equipment Design , Feasibility Studies , Female , Humans , Male , Middle Aged , Occupational Therapy , Orthotic Devices/statistics & numerical data , Recovery of Function , Retrospective Studies , Stroke Rehabilitation/methods
7.
Neurorehabil Neural Repair ; 32(6-7): 590-601, 2018 06.
Article in English | MEDLINE | ID: mdl-29888642

ABSTRACT

OBJECTIVE: Somatosensory function is critical to normal motor control. After stroke, dysfunction of the sensory systems prevents normal motor function and degrades quality of life. Structural neuroplasticity underpinnings of sensory recovery after stroke are not fully understood. The objective of this study was to identify changes in bilateral cortical thickness (CT) that may drive recovery of sensory acuity. METHODS: Chronic stroke survivors (n = 20) were treated with 12 weeks of rehabilitation. Measures were sensory acuity (monofilament), Fugl-Meyer upper limb and CT change. Permutation-based general linear regression modeling identified cortical regions in which change in CT was associated with change in sensory acuity. RESULTS: For the ipsilesional hemisphere in response to treatment, CT increase was significantly associated with sensory improvement in the area encompassing the occipital pole, lateral occipital cortex (inferior and superior divisions), intracalcarine cortex, cuneal cortex, precuneus cortex, inferior temporal gyrus, occipital fusiform gyrus, supracalcarine cortex, and temporal occipital fusiform cortex. For the contralesional hemisphere, increased CT was associated with improved sensory acuity within the posterior parietal cortex that included supramarginal and angular gyri. Following upper limb therapy, monofilament test score changed from 45.0 ± 13.3 to 42.6 ± 12.9 mm ( P = .063) and Fugl-Meyer score changed from 22.1 ± 7.8 to 32.3 ± 10.1 ( P < .001). CONCLUSIONS: Rehabilitation in the chronic stage after stroke produced structural brain changes that were strongly associated with enhanced sensory acuity. Improved sensory perception was associated with increased CT in bilateral high-order association sensory cortices reflecting the complex nature of sensory function and recovery in response to rehabilitation.


Subject(s)
Arm/physiopathology , Cerebral Cortex/diagnostic imaging , Neuronal Plasticity/physiology , Sensation/physiology , Stroke Rehabilitation , Stroke/diagnostic imaging , Adult , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Stroke/physiopathology , Touch/physiology
8.
Front Hum Neurosci ; 9: 394, 2015.
Article in English | MEDLINE | ID: mdl-26257623

ABSTRACT

OBJECTIVES: Neuroplastic changes that drive recovery of shoulder/elbow function after stroke have been poorly understood. The purpose of this study was to determine the relationship between neuroplastic brain changes related to shoulder/elbow movement control in response to treatment and recovery of arm motor function in chronic stroke survivors. METHODS: Twenty-three chronic stroke survivors were treated with 12 weeks of arm rehabilitation. Outcome measures included functional Magnetic Resonance Imaging (fMRI) for the shoulder/elbow components of reach and a skilled motor function test (Arm Motor Abilities Test, AMAT), collected before and after treatment. RESULTS: We observed two patterns of neuroplastic changes that were associated with gains in motor function: decreased or increased task-related brain activation. Those with significantly better motor function at baseline exhibited a decrease in brain activation in response to treatment, evident in the ipsilesional primary motor and contralesional supplementary motor regions; in contrast, those with greater baseline motor impairment, exhibited increased brain activation in response to treatment. There was a linear relationship between greater functional gain (AMAT) and increased activation in bilateral primary motor, contralesional primary and secondary sensory regions, and contralesional lateral premotor area, after adjusting for baseline AMAT, age, and time since stroke. CONCLUSIONS: Recovery of functional reach involves recruitment of several contralesional and bilateral primary motor regions. In response to intensive therapy, the direction of functional brain change (i.e., increase or decrease in task-related brain recruitment) for shoulder/elbow reach components depends on baseline level of motor function and may represent either different phases of recovery or different patterns of neuroplasticity that drive functional recovery.

10.
Neurorehabil Neural Repair ; 25(7): 588-96, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21515871

ABSTRACT

BACKGROUND: No single intervention restores the coordinated components of gait after stroke. OBJECTIVE: The authors tested the multimodal Gait Training Protocol, with or without functional electrical stimulation (FES), to improve volitional walking (without FES) in patients with persistent (>6 months) dyscoordinated gait. METHODS: A total of 53 subjects were stratified and randomly allocated to either FES with intramuscular (IM) electrodes (FES-IM) or No-FES. Both groups received 1.5-hour training sessions 4 times a week for 12 weeks of coordination exercises, body weight-supported treadmill training (BWSTT), and over-ground walking, provided with FES-IM or No-FES. The primary outcome was the Gait Assessment and Intervention Tool (G.A.I.T.) of coordinated movement components, with secondary measures, including manual muscle testing, isolated leg movements (Fugl-Meyer scale), 6-Minute Walk Test, and Locomotion/Mobility subscale of the Functional Independence Measure (FIM). RESULTS: No baseline differences in subject characteristics and measures were found. The G.A.I.T. showed an additive advantage with FES-IM versus No-FES (parameter statistic 1.10; P = .045, 95% CI = 0.023-2.179) at the end of training. For both FES-IM and No-FES, a within-group, pre/posttreatment gain was present for all measures (P < .05), and a continued benefit from mid- to posttreatment (P < .05) was present. For FES-IM, recovered coordinated gait persisted at 6-month follow-up but not for No-FES. CONCLUSION: Improved gait coordination and function were produced by the multimodal Gait Training Protocol. FES-IM added significant gains that were maintained for 6 months after the completion of training.


Subject(s)
Electric Stimulation Therapy/methods , Exercise Therapy/methods , Gait Disorders, Neurologic/rehabilitation , Stroke Rehabilitation , Aged , Data Interpretation, Statistical , Electric Stimulation Therapy/adverse effects , Electrodes, Implanted , Female , Gait/physiology , Gait Disorders, Neurologic/etiology , Humans , Independent Living , Locomotion/physiology , Male , Middle Aged , Physical Therapy Modalities , Resistance Training , Stroke/complications , Treatment Outcome , Walking/physiology
11.
J Rehabil Res Dev ; 45(7): 997-1006, 2008.
Article in English | MEDLINE | ID: mdl-19165689

ABSTRACT

After stroke rehabilitation, many survivors of stroke exhibit persistent gait deficits. In previous work, we demonstrated significant gains in gait kinematics for survivors of chronic stroke using multichannel functional electrical stimulation with intramuscular electrodes (FES-IM). For this study, we tested the feasibility of combining FES-IM and gait robot technologies for treating persistent gait deficits after stroke. Six subjects, >or= 6 months after stroke, received 30-minute intervention sessions of combined FES-IM and gait robotics 4 days a week for 12 weeks. Feasibility was assessed according to three factors: (1) performance of the interface of the two technologies during intervention sessions, (2) clinicians' success in using two technologies simultaneously, and (3) subject satisfaction. FES-IM system hardware and software design features combined with the gait robot technology proved feasible to use. Each technology alone provided unique advantages and disadvantages of gait practice characteristics. Because of the unique advantages and disadvantages of each technology, gait deficits need to be accurately identified and a judicious treatment plan properly targeted before FES-IM, a gait robot, or both combined are selected.


Subject(s)
Electric Stimulation/methods , Gait Disorders, Neurologic/rehabilitation , Robotics , Stroke Rehabilitation , Aged , Electric Stimulation/instrumentation , Feasibility Studies , Gait Disorders, Neurologic/etiology , Humans , Middle Aged , Patient Satisfaction , Range of Motion, Articular , Recovery of Function , Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...