Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1268134, 2024.
Article in English | MEDLINE | ID: mdl-38533264

ABSTRACT

The gut microbiota and barrier function play important roles in bone health. We previously demonstrated that chronic glucocorticoid (GC)-induced bone loss in mice is associated with significant shifts in gut microbiota composition and impaired gut barrier function. Korean Red Ginseng (KRG, Panax Ginseng Meyer, Araliaceae) extract has been shown to prevent glucocorticoid-induced osteoporosis (GIO) in a subcutaneous pellet model in mice, but its effect on gut microbiota and barrier function in this context is not known. The overall goal of this study was to test the effect of KRG extract in a clinically relevant, oral model of GIO and further investigate its role in modulating the gut-bone axis. Growing male mice (CD-1, 8 weeks) were treated with 75 µg/mL corticosterone (∼9 mg/kg/day) or 0.4% ethanol vehicle in the drinking water for 4 weeks. During this 4-week period, mice were treated daily with 500 mg/kg/day KRG extract dissolved in sterile water or an equal amount of sterile water via oral gastric gavage. After 4 weeks of treatment, we assessed bone volume, microbiota composition, gut barrier integrity, and immune cells in the bone marrow (BM) and mesenteric lymph nodes (MLNs). 4 weeks of oral GC treatment caused significant distal femur trabecular bone loss, and this was associated with changes in gut microbiota composition, impaired gut barrier function and altered immune cell composition. Importantly, KRG extract prevented distal femur trabecular bone loss and caused significant alterations in gut microbiota composition but had only modest effects on gut barrier function and immune cell populations. Taken together, these results demonstrate that KRG extract significantly modulates the gut microbiota-bone axis and prevents glucocorticoid-induced bone loss in mice.

2.
JBMR Plus ; 7(12): e10805, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130770

ABSTRACT

Glucocorticoids (GCs) are commonly used anti-inflammatory medications with significant side effects, including glucocorticoid-induced osteoporosis (GIO). We have previously demonstrated that chronic subcutaneous GC treatment in mice leads to gut barrier dysfunction and trabecular bone loss. We further showed that treating with probiotics or barrier enhancers improves gut barrier function and prevents GIO. The overall goal of this study was to test if probiotics could prevent GC-induced gut barrier dysfunction and bone loss in a clinically relevant oral-GC model of GIO. Eight-week-old male CD-1 mice were treated with vehicle or corticosterone in the drinking water for 4 weeks and administered probiotics Lactobacillus reuteri ATCC 6475 (LR 6475) or VSL#3 thrice weekly via oral gavage. As expected, GC treatment led to significant gut barrier dysfunction (assessed by measuring serum endotoxin levels) and bone loss after 4 weeks. Serum endotoxin levels significantly and negatively correlated with bone volume. Importantly, LR 6475 treatment effectively prevented both GC-induced increase in serum endotoxin and trabecular bone loss. VSL#3 had intermediate results, not differing from either control or GC-treated animals. GC-induced reductions in femur length, cortical thickness, and cortical area were not affected by probiotic treatment. Taken together, these results are the first to demonstrate that LR 6475 effectively prevents the detrimental effects of GC treatment on gut barrier, which correlates with enhanced trabecular bone health in an oral mouse model of GIO. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
J Ginseng Res ; 47(2): 265-273, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36926616

ABSTRACT

Background: The intestinal microbiota is an important regulator of bone health. In previous studies we have shown that intestinal microbiota dysbiosis, induced by treatment with broad spectrum antibiotics (ABX) followed by natural repopulation, results in gut barrier dysfunction and bone loss. We have also shown that treatment with probiotics or a gut barrier enhancer can inhibit dysbiosis-induced bone loss. The overall goal of this project was to test the effect of Korean Red Ginseng (KRG) extract on bone and gut health using antibiotics (ABX) dysbiosis-induced bone loss model in mice. Methods: Adult male mice (Balb/C, 12-week old) were administered broad spectrum antibiotics (ampicillin and neomycin) for 2 weeks followed by 4 weeks of natural repopulation. During this 4-week period, mice were treated with vehicle (water) or KRG extract. Other controls included mice that did not receive either antibiotics or KRG extract and mice that received only KRG extract. At the end of the experiments, we assessed various parameters to assess bone, microbiota and in vivo intestinal permeability. Results: Consistent with our previous results, post-ABX- dysbiosis led to significant bone loss. Importantly, this was associated with a decrease in gut microbiota alpha diversity and an increase in intestinal permeability. All these effects including bone loss were prevented by KRG extract treatment. Furthermore, our studies identified multiple genera including Lactobacillus and rc4-4 as well as Alistipes finegoldii to be potentially linked to the effect of KRG extract on gut-bone axis. Conclusion: Together, our results demonstrate that KRG extract regulates the gut-bone axis and is effective at preventing dysbiosis-induced bone loss in mice.

4.
Front Cell Dev Biol ; 11: 1324649, 2023.
Article in English | MEDLINE | ID: mdl-38375074

ABSTRACT

Glucocorticoid-induced osteoporosis (GIO) is a significant side effect of prolonged glucocorticoid (GC) treatment. Chronic GC treatment also leads to trabecular bone loss and gut microbiota dysbiosis in mice. The gut dysbiosis is mechanistically linked to GIO, which indicates that the microbiota can be targeted to prevent GIO. Prunes, a dried fruit and prebiotic, have emerged in the literature as an effective treatment for sex-steroid deficiency induced osteoporosis (primary osteoporosis). Prunes also significantly alter the composition of the gut microbiota in both rodent models and human studies. Therefore, we tested if dietary prune (DP) supplementation could prevent GC-induced bone loss and affect microbiota composition in an established model of GIO. Sixteen-week-old, skeletally mature, female C57BL/6J mice were treated with a subcutaneous 5 mg placebo or prednisolone pellet for 8 weeks and fed an AIN-93M control diet or a diet modified to include 5, 15, or 25% (w/w) dried California prune powder. As expected, GC treated mice developed significant trabecular bone loss in the distal femur. More importantly, as little as 5% DP supplementation effectively prevented trabecular bone loss. Further, dose dependent increases in trabecular bone volume fraction were observed in GC + 15% and GC + 25% DP mice. Amazingly, in the placebo (non-GC treated) groups, 25% DP supplementation caused a ∼3-fold increase in distal femur trabecular bone volume fraction; this sizable bone response has not been previously observed in healthy mice with gut targeted natural treatments. Along with the striking effect on bone health, GC treatment and 25% DP supplementation led to drastic shifts in gut microbiota composition and several specific changes are strongly associated with bone health. Taken together, these results are the first to demonstrate that DP supplementation effectively prevents the negative effects of prolonged GC therapy on trabecular bone health and strongly associates with shifts in the composition of the gut microbiota.

5.
Front Immunol ; 13: 972108, 2022.
Article in English | MEDLINE | ID: mdl-36341330

ABSTRACT

Autoimmune diseases can be triggered by environmental toxicants such as crystalline silica dust (cSiO2). Here, we characterized the dose-dependent immunomodulation and toxicity of the glucocorticoid (GC) prednisone in a preclinical model that emulates onset and progression of cSiO2-triggered lupus. Two cohorts of 6-wk-old female NZBWF1 mice were fed either control AIN-93G diet or one of three AIN-93G diets containing prednisone at 5, 15, or 50 mg/kg diet which span human equivalent oral doses (HED) currently considered to be low (PL; 5 mg/d HED), moderate (PM; 14 mg/d HED), or high (PH; 46 mg/d HED), respectively. At 8 wk of age, mice were intranasally instilled with either saline vehicle or 1 mg cSiO2 once weekly for 4 wk. The experimental plan was to 1) terminate one cohort of mice (n=8/group) 14 wk after the last cSiO2 instillation for pathology and autoimmunity assessment and 2) to maintain a second cohort (n=9/group) to monitor glomerulonephritis development and survival. Mean blood concentrations of prednisone's principal active metabolite, prednisolone, in mice fed PL, PM, and PH diets were 27, 105, 151 ng/ml, respectively, which are consistent with levels observed in human blood ≤ 12 h after single bolus treatments with equivalent prednisone doses. Results from the first cohort revealed that consumption of PM, but not PL diet, significantly reduced cSiO2-induced pulmonary ectopic lymphoid structure formation, nuclear-specific AAb production, inflammation/autoimmune gene expression in the lung and kidney, splenomegaly, and glomerulonephritis in the kidney. Relative to GC-associated toxicity, PM diet, but not PL diet, elicited muscle wasting, but these diets did not affect bone density or cause glucosuria. Importantly, neither PM nor PL diet improved latency of cSiO2-accelerated death. PH-fed mice in both cohorts displayed robust GC-associated toxicity including body weight loss, reduced muscle mass, and extensive glucosuria 7 wk after the final cSiO2 instillation requiring their early removal from the study. Taken together, our results demonstrate that while moderate doses of prednisone can reduce important pathological endpoints of cSiO2-induced autoimmunity in lupus-prone mice, such as upstream ectopic lymphoid structure formation, these ameliorative effects come with unwanted GC toxicity, and, crucially, none of these three doses extended survival time.


Subject(s)
Autoimmune Diseases , Glomerulonephritis , Humans , Mice , Female , Animals , Infant, Newborn , Autoimmunity , Prednisone/pharmacology , Glucocorticoids/pharmacology , Disease Models, Animal , Silicon Dioxide/adverse effects , Autoimmune Diseases/chemically induced
6.
J Lipid Res ; 63(12): 100297, 2022 12.
Article in English | MEDLINE | ID: mdl-36243101

ABSTRACT

Bile acids (BAs) are steroid detergents in bile that contribute to fat absorption, cell signaling, and microbiome interactions. The final step in their synthesis is amino acid conjugation with either glycine or taurine in the liver by the enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT). Here, we describe the microbial, chemical, and physiological consequences of Baat gene knockout. Baat-/- mice were underweight after weaning but quickly exhibited catch-up growth. At three weeks of age, KO animals had increased phospholipid excretion and decreased subcutaneous fat pad mass, liver mass, glycogen staining in hepatocytes, and hepatic vitamin A stores, but these were less marked in adulthood. Additionally, KO mice had an altered microbiome in early life. Their BA pool was highly enriched in cholic acid but not completely devoid of conjugated BAs. KO animals had 27-fold lower taurine-conjugated BAs than wild type in their liver but similar concentrations of glycine-conjugated BAs and higher microbially conjugated BAs. Furthermore, the BA pool in Baat-/- was enriched in a variety of unusual BAs that were putatively sourced from cysteamine conjugation with subsequent oxidation and methylation of the sulfur group mimicking taurine. Antibiotic treatment of KO mice indicated the microbiome was not the likely source of the unusual conjugations, instead, the unique BAs in KO animals were likely derived from the peroxisomal acyltransferases Acnat1 and Acnat2, which are duplications of Baat in the mouse genome that are inactivated in humans. This study demonstrates that BA conjugation is important for early life development of mice.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Humans , Mice , Animals , Adult , Gene Knockout Techniques , Mice, Knockout , Liver/metabolism , Taurine/metabolism , Glycine
7.
Am J Physiol Endocrinol Metab ; 323(2): E159-E170, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35658543

ABSTRACT

Undernutrition-induced growth restriction in the early stages of life increases the risk of chronic disease in adulthood. Although metabolic impairments have been observed, few studies have characterized the gut microbiome and gut-liver metabolome profiles of growth-restricted animals during early-to-mid-life development. To induce growth restriction, mouse offspring were either born to gestational undernutrition (GUN) or suckled from postnatal undernutrition (PUN) dams fed a protein-restricted diet (8% protein) or control diet (CON; 20% protein) until weaning at postnatal age of 21 days (PN21). At PN21, all mice were fed the CON diet until adulthood (PN80). Livers were collected at PN21 and PN80, and fecal samples were collected weekly starting at PN21 (postweaning week 1) until PN80 (postweaning week 5) for gut microbiome and metabolome analyses. PUN mice exhibited the most alterations in gut microbiome and gut and liver metabolome compared with CON mice. These mice had altered fecal microbial ß-diversity (P = 0.001) and exhibited higher proportions of Bifidobacteriales [linear mixed model (LMM) P = 7.1 × 10-6), Clostridiales (P = 1.459 × 10-5), Erysipelotrichales (P = 0.0003), and lower Bacteroidales (P = 4.1 × 10-5)]. PUN liver and fecal metabolome had a reduced total bile acid pool (P < 0.01), as well as lower abundance of riboflavin (P = 0.003), amino acids [i.e., methionine (P = 0.0018), phenylalanine (P = 0.0015), and tyrosine (P = 0.0041)], and higher excreted total peptides (LMM P = 0.0064) compared with CON. Overall, protein restriction during lactation permanently alters the gut microbiome into adulthood. Although the liver bile acids, amino acids, and acyl-carnitines recovered, the fecal peptides and microbiome remained permanently altered into adulthood, indicating that inadequate protein intake in a specific time frame in early life can have an irreversible impact on the microbiome and fecal metabolome.NEW & NOTEWORTHY Undernutrition-induced early-life growth restriction not only leads to increased disease risk but also permanently alters the gut microbiome and gut-liver metabolome during specific windows of early-life development.


Subject(s)
Gastrointestinal Microbiome , Malnutrition , Animals , Bile Acids and Salts , Diet, Protein-Restricted , Feces , Female , Metabolome , Mice
8.
Bone ; 134: 115269, 2020 05.
Article in English | MEDLINE | ID: mdl-32061677

ABSTRACT

Recent studies in mouse models have shown that gut microbiota significantly influences bone health. We demonstrated that 2-week oral treatment with broad spectrum antibiotics followed by 4 weeks of recovery of the gut microbiota results in dysbiosis (microbiota imbalance)-induced bone loss in mice. Because gut microbiota is critical for the development of the immune system and since both microbiota and the immune system can regulate bone health, in this study, we tested the role of the immune system in mediating post-antibiotic dysbiosis-induced bone loss. For this, we treated wild-type (WT) and lymphocyte deficient Rag2 knockout (KO) mice with ampicillin/neomycin cocktail in water for 2 weeks followed by 4 weeks of water without antibiotics. This led to a significant bone loss (31% decrease from control) in WT mice. Interestingly, no bone loss was observed in the KO mice suggesting that lymphocytes are required for dysbiosis-induced bone loss. Bray-Curtis diversity metrics showed similar microbiota changes in both the WT and KO post-antibiotic treated groups. However, several operational taxonomic units (OTUs) classified as Lactobacillales were significantly higher in the repopulated KO when compared to the WT mice, suggesting that these bacteria might play a protective role in preventing bone loss in the KO mice after antibiotic treatment. The effect of dysbiosis on bone was therefore examined in the WT mice in the presence or absence of oral Lactobacillus reuteri treatment for 4 weeks (post-ABX treatment). As hypothesized, mice treated with L. reuteri did not display bone loss, suggesting a bone protective role for this group of bacteria. Taken together, our studies elucidate an important role for lymphocytes in regulating post-antibiotic dysbiosis-induced bone loss.


Subject(s)
Anti-Bacterial Agents , Bone Resorption , Dysbiosis , Gastrointestinal Microbiome , Animals , Bone Resorption/microbiology , Cancellous Bone , Dysbiosis/chemically induced , Lymphocytes , Mice , Mice, Inbred C57BL
9.
J Cell Physiol ; 235(3): 2350-2365, 2020 03.
Article in English | MEDLINE | ID: mdl-31538345

ABSTRACT

Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Fractures, Bone/genetics , Interleukin-10/genetics , Osteoporosis/genetics , Sp7 Transcription Factor/genetics , Animals , Cancellous Bone/metabolism , Cancellous Bone/pathology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/pathology , Femur/metabolism , Femur/pathology , Fractures, Bone/complications , Fractures, Bone/pathology , Glucose/metabolism , Humans , Inflammation/complications , Inflammation/genetics , Inflammation/pathology , Mice, Knockout , Osteoblasts/metabolism , Osteoblasts/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoporosis/complications , Osteoporosis/pathology , Risk Factors
10.
J Bone Miner Res ; 35(4): 801-820, 2020 04.
Article in English | MEDLINE | ID: mdl-31886921

ABSTRACT

Glucocorticoids (GCs) are potent immune-modulating drugs with significant side effects, including glucocorticoid-induced osteoporosis (GIO). GCs directly induce osteoblast and osteocyte apoptosis but also alter intestinal microbiota composition. Although the gut microbiota is known to contribute to the regulation of bone density, its role in GIO has never been examined. To test this, male C57/Bl6J mice were treated for 8 weeks with GC (prednisolone, GC-Tx) in the presence or absence of broad-spectrum antibiotic treatment (ABX) to deplete the microbiota. Long-term ABX prevented GC-Tx-induced trabecular bone loss, showing the requirement of gut microbiota for GIO. Treatment of GC-Tx mice with a probiotic (Lactobacillus reuteri [LR]) prevented trabecular bone loss. Microbiota analyses indicated that GC-Tx changed the abundance of Verrucomicobiales and Bacteriodales phyla and random forest analyses indicated significant differences in abundance of Porphyromonadaceae and Clostridiales operational taxonomic units (OTUs) between groups. Furthermore, transplantation of GC-Tx mouse fecal material into recipient naïve, untreated WT mice caused bone loss, supporting a functional role for microbiota in GIO. We also report that GC caused intestinal barrier breaks, as evidenced by increased serum endotoxin level (2.4-fold), that were prevented by LR and ABX treatments. Enhancement of barrier function with a mucus supplement prevented both GC-Tx-induced barrier leakage and trabecular GIO. In bone, treatment with ABX, LR or a mucus supplement reduced GC-Tx-induced osteoblast and osteocyte apoptosis. GC-Tx suppression of Wnt10b in bone was restored by the LR and high-molecular-weight polymer (MDY) treatments as well as microbiota depletion. Finally, we identified that bone-specific Wnt10b overexpression prevented GIO. Taken together, our data highlight the previously unappreciated involvement of the gut microbiota and intestinal barrier function in trabecular GIO pathogenesis (including Wnt10b suppression and osteoblast and osteocyte apoptosis) and identify the gut as a novel therapeutic target for preventing GIO. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Gastrointestinal Microbiome , Osteoporosis , Animals , Bone Density , Glucocorticoids/toxicity , Male , Mice , Osteoblasts , Osteoporosis/chemically induced , Osteoporosis/drug therapy
11.
Sci Rep ; 9(1): 14708, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31605025

ABSTRACT

Oral treatment with probiotic bacteria has been shown to prevent bone loss in multiple models of osteoporosis. In previous studies we demonstrated that oral administration of Lactobacillus reuteri in healthy male mice increases bone density. The host and bacterial mechanisms of these effects however are not well understood. The objective of this study was to understand the role of lymphocytes in mediating the beneficial effects of L. reuteri on bone health in male mice. We administered L. reuteri in drinking water for 4 weeks to wild type or Rag knockout (lack mature T and B lymphocytes) male mice. While L. reuteri treatment increased bone density in wild type, no significant increases were seen in Rag knockout mice, suggesting that lymphocytes are critical for mediating the beneficial effects of L. reuteri on bone density. To understand the effect of L. reuteri on lymphocytes in the intestinal tissues, we isolated mesenteric lymph node (MLN) from naïve wild type mice. In ex vivo studies using whole mesenteric lymph node (MLN) as well as CD3+ T-cells, we demonstrate that live L. reuteri and its secreted factors have concentration-dependent effects on the expression of cytokines, including anti-inflammatory cytokine IL-10. Fractionation studies identified that the active component of L. reuteri is likely water soluble and small in size (<3 kDa) and its effects on lymphocytes are negatively regulated by a RIP2 inhibitor, suggesting a role for NOD signaling. Finally, we show that T-cells from MLNs treated with L. reuteri supernatants, secrete factors that enhance osterix (transcription factor involved in osteoblast differentiation) expression in MC3T3-E1 osteoblasts. Together, these data suggest that L. reuteri secreted factors regulate T-lymphocytes which play an important role in mediating the beneficial effects of L. reuteri on bone density.


Subject(s)
Bone Density , Host Microbial Interactions/immunology , Limosilactobacillus reuteri/metabolism , Osteoblasts/metabolism , Probiotics/pharmacology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Cell Line , Homeodomain Proteins/genetics , Interleukin-10/metabolism , Intestines , Lymph Nodes/cytology , Male , Mesentery , Mice , Mice, Inbred C57BL , Mice, Knockout , Probiotics/administration & dosage , Sp7 Transcription Factor/metabolism
13.
BMC Musculoskelet Disord ; 20(1): 326, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31299941

ABSTRACT

BACKGROUND: Oestrogen-deficiency induced by menopause is associated with reduced bone density and primary osteoporosis, resulting in an increased risk of fracture. While the exact etiology of menopause-induced primary osteoporotic bone loss is not fully known, members of the tumour necrosis factor super family (TNFSF) are known to play a role. Recent studies have revealed that the TNFSF members death receptor 3 (DR3) and one of its ligands, TNF-like protein 1A (TL1A) have a key role in secondary osteoporosis; enhancing CD14+ peripheral blood mononuclear cell (PBMC) osteoclast formation and bone resorption. Whether DR3 and TL1A contribute towards bone loss in menopause-induced primary osteoporosis however, remains unknown. METHODS: To investigate this we performed flow cytometry analysis of DR3 expression on CD14+ PBMCs isolated from pre- and early post-menopausal females and late post-menopausal osteoporotic patients. Serum levels of TL1A, CCL3 and total MMP-9 were measured by ELISA. In vitro osteoclast differentiation assays were performed to determine CD14+ monocyte osteoclastogenic potential. In addition, splenic CD4+ T cell DR3 expression was investigated 1 week and 8 weeks post-surgery, using the murine ovariectomy model. RESULTS: In contrast to pre-menopausal females, CD14+ monocytes isolated from post-menopausal females were unable to induce DR3 expression. Serum TL1A levels were decreased approx. 2-fold in early post-menopausal females compared to pre-menopausal controls and post-menopausal osteoporotic females; no difference was observed between pre-menopausal and late post-menopausal osteoporotic females. Analysis of in vitro CD14+ monocyte osteoclastogenic potential revealed no significant difference between the post-menopausal and post-menopausal osteoporotic cohorts. Interestingly, in the murine ovariectomy model splenic CD4+ T cell DR3 expression was significantly increased at 1 week but not 8 weeks post-surgery when compared to the sham control. CONCLUSION: Our results reveals for the first time that loss of oestrogen has a significant effect on DR3; decreasing expression on CD14+ monocytes and increasing expression on CD4+ T cells. These data suggest that while oestrogen-deficiency induced changes in DR3 expression do not affect late post-menopausal bone loss they could potentially have an indirect role in early menopausal bone loss through the modulation of T cell activity.


Subject(s)
Estrogens/deficiency , Osteoporosis, Postmenopausal/metabolism , Receptors, Tumor Necrosis Factor, Member 25/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/blood , Adult , Aged , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Female , Humans , Lipopolysaccharide Receptors/metabolism , Menopause/blood , Menopause/physiology , Mice , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Osteoporosis, Postmenopausal/blood , Osteoporosis, Postmenopausal/immunology , Ovariectomy , Young Adult
14.
J Bone Miner Res ; 34(4): 681-698, 2019 04.
Article in English | MEDLINE | ID: mdl-30690795

ABSTRACT

Antibiotic treatment, commonly prescribed for bacterial infections, depletes and subsequently causes long-term alterations in intestinal microbiota composition. Knowing the importance of the microbiome in the regulation of bone density, we investigated the effect of postantibiotic treatment on gut and bone health. Intestinal microbiome repopulation at 4-weeks postantibiotic treatment resulted in an increase in the Firmicutes:Bacteroidetes ratio, increased intestinal permeability, and notably reduced femoral trabecular bone volume (approximately 30%, p < 0.01). Treatment with a mucus supplement (a high-molecular-weight polymer, MDY-1001 [MDY]) prevented the postantibiotic-induced barrier break as well as bone loss, indicating a mechanistic link between increased intestinal permeability and bone loss. A link between the microbiome composition and bone density was demonstrated by supplementing the mice with probiotic bacteria. Specifically, Lactobacillus reuteri, but not Lactobacillus rhamnosus GG or nonpathogenic Escherichia coli, reduced the postantibiotic elevation of the Firmicutes:Bacteroidetes ratio and prevented femoral and vertebral trabecular bone loss. Consistent with causing bone loss, postantibiotic-induced dysbiosis decreased osteoblast and increased osteoclast activities, changes that were prevented by both L. reuteri and MDY. These data underscore the importance of microbial dysbiosis in the regulation of intestinal permeability and bone health, as well as identify L. reuteri and MDY as novel therapies for preventing these adverse effects. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Anti-Bacterial Agents/adverse effects , Bone Resorption , Dysbiosis , Gastrointestinal Microbiome/drug effects , Limosilactobacillus reuteri , Probiotics/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteroides/classification , Bacteroides/growth & development , Bone Resorption/chemically induced , Bone Resorption/microbiology , Bone Resorption/pathology , Bone Resorption/prevention & control , Dysbiosis/chemically induced , Dysbiosis/microbiology , Dysbiosis/prevention & control , Firmicutes/classification , Firmicutes/growth & development , Male , Mice , Mice, Inbred BALB C
15.
Bone ; 118: 20-31, 2019 01.
Article in English | MEDLINE | ID: mdl-29604350

ABSTRACT

High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between intestinal microbial balance and bone health. Therefore, we examined whether exercise could prevent HF-induced bone pathology in male mice and determined whether benefits correlate to changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as well and increased marrow adiposity (44% increase). More importantly, these effects were prevented by exercise. Exercise also had a significant effect on several cortical bone parameters and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses indicated that exercise altered the HF induced changes in microbial composition by reducing the Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, exercise can prevent many of the negative effects of a high fat diet on male skeletal health. Exercise induced changes in microbiota composition could represent a novel mechanism that contributes to exercise induced benefits to bone health.


Subject(s)
Adiposity , Bone Marrow/pathology , Bone Resorption/prevention & control , Diet, High-Fat/adverse effects , Dysbiosis/prevention & control , Physical Conditioning, Animal , Animals , Biomarkers/blood , Bone Resorption/blood , Bone Resorption/complications , Bone Resorption/physiopathology , Cancellous Bone/pathology , Cancellous Bone/physiopathology , Cortical Bone/pathology , Cortical Bone/physiopathology , Dysbiosis/blood , Dysbiosis/complications , Gastrointestinal Microbiome , Male , Mice, Inbred C57BL , Obesity/prevention & control , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis
16.
J Cell Biochem ; 120(3): 4398-4408, 2019 03.
Article in English | MEDLINE | ID: mdl-30269370

ABSTRACT

Leptin, a hormone primarily produced by adipocytes, contributes to the regulation of bone health by modulating bone density, growth and adiposity. Upon leptin binding, multiple sites of the long form of the leptin receptor (LepRb) are phosphorylated to trigger activation of downstream signaling pathways. To address the role of LepRb-signaling pathways in bone health, we compared the effects of three LepRb mutations on bone density, adiposity, and growth in male and female mice. The ∆65 mutation, which lacks the known tyrosine phosphorylation sites, caused obesity and the most dramatic bone phenotype marked by excessive bone adiposity, osteoporosis, and decreased growth, consistent with the phenotype of db/db and ob/ob mice that fully lack leptin receptor signaling. Mutation of LepRb Tyr 1138 , which results in an inability to recruit and phosphorylate signal transducer and activator of transcription 3, also caused obesity, but bone loss and adiposity were more dominant in male mice and no growth defect was observed. In contrast, mutation of LepRb Tyr 985 , which blocks SHP2/SOCS3 recruitment to LepRb and contributes to leptin hypersensitivity, promoted increased femur bone density only in male mice, while marrow adiposity and bone growth were not affected. Additional analyses of vertebral trabecular bone volume indicate that only the Tyr 1138 mutant mice exhibit bone loss in vertebrae. Together, our findings suggest that the phosphorylation status of specific sites of the LepRb contribute to the sex- and location-dependent bone responses to leptin. Unraveling the mechanisms by which leptin responses are sex- and location-dependent can contribute to the development of uniquely targeted osteoporosis therapies.


Subject(s)
Adiposity/physiology , Bone Density/physiology , Leptin/metabolism , Receptors, Leptin/metabolism , Sex Characteristics , Signal Transduction/physiology , Adipocytes, White/metabolism , Animals , Cancellous Bone/metabolism , Female , Femur/metabolism , Leptin/genetics , Male , Mice , Mice, Mutant Strains , Mutation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Receptors, Leptin/genetics , Spine/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
17.
Front Physiol ; 9: 384, 2018.
Article in English | MEDLINE | ID: mdl-29706903

ABSTRACT

As a consequence of rapid growth, broiler chickens are more susceptible to infection as well as bone fractures that result in birds being culled. Intestinal infection/inflammation has been demonstrated to promote bone loss in mice and humans. Given this link, we hypothesize that therapeutics that target the gut can benefit bone health. To test this, we infected broiler chickens (7 days old) with Salmonella and treated the birds with or without MDY, a non-absorbable mucus supplement known to benefit intestinal health, from day 1-21 or from day 14-21. Chicken femoral trabecular and cortical bone parameters were analyzed by microcomputed tomography at 21 days. Birds infected with Salmonella displayed significant trabecular bone loss and bone microarchitecture abnormalities that were specific to the femoral neck region, a common site of fracture in chickens. Histological analyses of the chicken bone indicated an increase in osteoclast surface/bone surface in this area indicating that infection-induced bone resorption likely causes the bone loss. Of great interest, treatment with MDY effectively prevented broiler chicken bone loss and architectural changes when given chronically throughout the experiment or for only a week after infection. The latter suggests that MDY may not only prevent bone loss but reverse bone loss. MDY also increased cortical bone mineral density in Salmonella-treated chickens. Taken together, our studies demonstrate that Salmonella-induced bone loss in broiler chickens is prevented by oral MDY.

18.
Toxicol Appl Pharmacol ; 348: 85-98, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29673856

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) agonists have been shown to regulate bone development and remodeling in a species-, ligand-, and age-specific manner, however the underlying mechanisms remain poorly understood. In this study, we characterized the effect of 0.01-30 µg/kg TCDD on the femoral morphology of male and female juvenile mice orally gavaged every 4 days for 28 days and used RNA-Seq to investigate gene expression changes associated with the resultant phenotype. Micro-computed tomography revealed that TCDD dose-dependently increased trabecular bone volume fraction (BVF) 2.9- and 3.3-fold in male and female femurs, respectively. Decreased serum tartrate-resistant acid phosphatase (TRAP) levels, combined with a reduced osteoclast surface to bone surface ratio and repression of femoral proteases (cathepsin K, matrix metallopeptidase 13), suggests that TCDD impaired bone resorption. Increased osteoblast counts at the trabecular bone surface were consistent with a reciprocal reduction in the number of bone marrow adipocytes, suggesting AhR activation may direct mesenchymal stem cell differentiation towards osteoblasts rather than adipocytes. Notably, femoral expression of transmembrane glycoprotein NMB (Gpnmb; osteoactivin), a positive regulator of osteoblast differentiation and mineralization, was dose-dependently induced up to 18.8-fold by TCDD. Moreover, increased serum levels of 1,25-dihydroxyvitamin D3 were in accordance with the renal induction of 1α-hydroxylase Cyp27b1 and may contribute to impaired bone resorption. Collectively, the data suggest AhR activation tipped the bone remodeling balance towards bone formation, resulting in increased bone mass with reduced marrow adiposity.


Subject(s)
Adiposity/drug effects , Bone Marrow/drug effects , Cancellous Bone/drug effects , Femur/drug effects , Osteogenesis/drug effects , Polychlorinated Dibenzodioxins/toxicity , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/biosynthesis , Adipocytes/drug effects , Adipocytes/metabolism , Age Factors , Animals , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Marrow/metabolism , Bone Marrow/physiopathology , Bone Resorption/chemically induced , Bone Resorption/metabolism , Bone Resorption/physiopathology , Calcitriol/blood , Cancellous Bone/diagnostic imaging , Cancellous Bone/metabolism , Cancellous Bone/physiopathology , Cathepsin K/metabolism , Dose-Response Relationship, Drug , Eye Proteins/metabolism , Female , Femur/diagnostic imaging , Femur/metabolism , Femur/physiopathology , Kidney/enzymology , Male , Matrix Metalloproteinase 13/metabolism , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Tartrate-Resistant Acid Phosphatase/blood , Time Factors , X-Ray Microtomography
19.
Physiol Genomics ; 50(6): 407-415, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29570431

ABSTRACT

G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase and plays a key role in different disease processes. Previously, we showed that GRK2 knockdown enhances wound healing in colonic epithelial cells. Therefore, we hypothesized that ablation of GRK2 would protect mice from dextran sodium sulfate (DSS)-induced acute colitis. To test this, we administered DSS to wild-type (GRK2+/+) and GRK2 heterozygous (GRK+/-) mice in their drinking water for 7 days. As predicted, GRK2+/- mice were protected from colitis as demonstrated by decreased weight loss (20% loss in GRK2+/+ vs. 11% loss in GRK2+/-). lower disease activity index (GRK2+/+ 9.1 vs GRK2+/- 4.1), and increased colon lengths (GRK2+/+ 4.7 cm vs GRK2+/- 5.3 cm). To examine the mechanisms by which GRK2+/- mice are protected from colitis, we investigated expression of inflammatory genes in the colon as well as immune cell profiles in colonic lamina propria, mesenteric lymph node, and in bone marrow. Our results did not reveal differences in immune cell profiles between the two genotypes. However, expression of inflammatory genes was significantly decreased in DSS-treated GRK2+/- mice compared with GRK2+/+. To understand the mechanisms, we generated myeloid-specific GRK2 knockout mice and subjected them to DSS-induced colitis. Similar to whole body GRK2 heterozygous knockout mice, myeloid-specific knockout of GRK2 was sufficient for the protection from DSS-induced colitis. Together our results indicate that deficiency of GRK2 protects mice from DSS-induced colitis and further suggests that the mechanism of this effect is likely via GRK2 regulation of inflammatory genes in the myeloid cells.


Subject(s)
Colitis/chemically induced , Colitis/prevention & control , G-Protein-Coupled Receptor Kinase 2/deficiency , Acute Disease , Animals , Colitis/enzymology , Colitis/pathology , Colon/metabolism , Colon/pathology , Dextran Sulfate , G-Protein-Coupled Receptor Kinase 2/metabolism , Heterozygote , Inflammation/genetics , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism
20.
Calcif Tissue Int ; 102(4): 480-488, 2018 04.
Article in English | MEDLINE | ID: mdl-29453726

ABSTRACT

Probiotics have been consumed by humans for thousands of years because they are beneficial for long-term storage of foods and promote the health of their host. Ingested probiotics reside in the gastrointestinal tract where they have many effects including modifying the microbiota composition, intestinal barrier function, and the immune system which result in systemic benefits to the host, including bone health. Probiotics benefit bone growth, density, and structure under conditions of dysbiosis, intestinal permeability, and inflammation (recognized mediators of bone loss and osteoporosis). It is likely that multiple mechanisms are involved in mediating probiotic signals from the gut to the bone. Studies indicate a role for the microbiota (composition and activity), intestinal barrier function, and immune cells in the signaling process. These mechanisms are not mutually exclusive, but rather, may synergize to provide benefits to the skeletal system of the host and serve as a starting point for investigation. Given that probiotics hold great promise for supporting bone health and are generally regarded as safe, future studies identifying mechanisms are warranted.


Subject(s)
Bone and Bones/immunology , Microbiota/immunology , Minerals/metabolism , Osteoporosis/microbiology , Probiotics/metabolism , Animals , Humans , Inflammation/immunology , Inflammation/microbiology , Osteoporosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...