Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0259678, 2021.
Article in English | MEDLINE | ID: mdl-34758053

ABSTRACT

Meniscus tears of the knee are among the most common orthopedic knee injury. Specifically, tears of the posterior root can result in abnormal meniscal extrusion leading to decreased function and progressive osteoarthritis. Despite contemporary surgical treatments of posterior meniscus root tears, there is a low rate of healing and an incidence of residual meniscus extrusion approaching 30%, illustrating an inability to recapitulate native meniscus function. Here, we characterized the differential functional behavior of the medial and lateral meniscus during axial compression load and dynamic knee motion using a cadaveric model. We hypothesized essential differences in extrusion between the medial and lateral meniscus in response to axial compression and knee range of motion. We found no differences in the amount of meniscus extrusion between the medial and lateral meniscus with a competent posterior root (0.338mm vs. 0.235mm; p-value = 0.181). However, posterior root detachment resulted in a consistently increased meniscus extrusion for the medial meniscus compared to the lateral meniscus (2.233mm vs. 0.4705mm; p-value < 0.0001). Moreover, detachment of the posterior root of the medial meniscus resulted in an increase in extrusion at all angles of knee flexion and was most pronounced (4.00mm ± 1.26mm) at 30-degrees of knee flexion. In contrast, the maximum mean extrusion of the lateral meniscus was 1.65mm ± 0.97mm, occurring in full extension. Furthermore, only the medial meniscus extruded during dynamic knee flexion after posterior root detachment. Given the differential functional behaviors between the medial and lateral meniscus, these findings suggest that posterior root repair requires reducing overall meniscus extrusion and recapitulating the native functional responses specific to each meniscus.


Subject(s)
Menisci, Tibial/physiology , Meniscus/physiology , Range of Motion, Articular/physiology , Humans , Knee Injuries/physiopathology , Knee Joint/physiology , Lower Extremity/physiology
2.
Vet Surg ; 31(1): 85-93, 2002.
Article in English | MEDLINE | ID: mdl-11778172

ABSTRACT

OBJECTIVE: To compare the biomechanical characteristics and mode of failure of two different dynamic compression plate (DCP) techniques for proximal interphalangeal joint (PIPJ) arthrodesis in horses. STUDY DESIGN: Randomized block-design blocking on horse (1-5), method of fixation (two 7-hole, 3.5-mm broad DCP vs two 5-hole, 4.5-mm narrow DCP), side (left, right), and end (front, hind). Constructs were loaded to failure in 3-point bending in a dorsal-to-palmar (plantar) direction. SAMPLE POPULATION: Ten paired limbs from 5 equine cadavers. METHODS: Two 7-hole, 3.5-mm broad dynamic compression plates (bDCP) were used in 1 limb of a pair, and two 5-hole 4.5-mm narrow dynamic compression plates (nDCP) were used on the contralateral limb. Plates were positioned abaxially across the dorsomedial and dorsolateral aspect of the PIPJ. Arthrodesis constructs were loaded (19 mm/s) in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials-testing machine. Composite stiffness, yield point, and maximal bending moment at failure were obtained from bending moment-angular deformation curves. Data were analyzed using ANOVA, X(2) analysis, and Fisher's exact tests; the power of the test was calculated when differences were not significant. RESULTS: There were no significant differences in composite stiffness (P >.05; power = 0.8 @ delta = 21.9%), yield point (P >.05; power = 0.8 @ delta = 34.4%), or maximal bending moment (P >.05; power = 0.8 @ delta = 17.8%) between the two fixation techniques. For bDCP constructs, 11% (15 of 140) of the 3.5-mm screws were damaged; 7 of the screw heads pulled through plates where the plates bent, 1 screw head broke off, and 7 screws were bent or pulled out of the phalanx. For nDCP constructs, 8% (8 of 100) of the 4.5-mm screws were damaged; 1 screw head pulled through a plate, 1 screw head broke off, and 6 screws were bent or pulled out of the phalanx. CONCLUSIONS: There were no biomechanical or failure differences between bDCP and nDCP fixation of the PIPJ in horses when evaluated in single-cycle 3-point bending to failure. CLINICAL RELEVANCE: There is no biomechanical advantage to the use of two 7-hole, 3.5-mm bDCP in equine proximal interphalangeal arthrodesis compared with two 5-hole, 4.5-mm nDCP. Two 5-hole, 4.5-mm nDCP may be easier to place, whereas two 7-hole, 3.5-mm bDCP may provide more versatility in fracture repair.


Subject(s)
Arthrodesis/veterinary , Bone Plates/veterinary , Horses/surgery , Toe Joint/surgery , Animals , Arthrodesis/instrumentation , Biomechanical Phenomena , Equipment Design , Forelimb , Hindlimb , Horses/injuries , Toe Joint/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...