Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239951

ABSTRACT

Apoptosis and necroptosis overlap in their initial signaling but diverge to produce non-inflammatory and pro-inflammatory outcomes, respectively. High glucose pushes signaling in favor of necroptosis producing a hyperglycemic shift from apoptosis to necroptosis. This shift depends on receptor-interacting protein 1 (RIP1) and mitochondrial reactive oxygen species (ROS). Here, we show that RIP1, mixed lineage kinase domain-like (MLKL) protein, Bcl-2 agonist/killer (Bak), Bcl-2 associated x (Bax) protein, and dynamin-related protein 1 (Drp1) traffic to the mitochondria in high glucose. RIP1 and MLKL appear in the mitochondria in their activated, phosphorylated states while Drp1 appears in its activated, dephosphorylated state in high glucose. Mitochondrial trafficking is prevented in rip1 KO cells and upon treatment with N-acetylcysteine. Induction of ROS replicated the mitochondrial trafficking seen in high glucose. MLKL forms high MW oligomers in the outer and inner mitochondrial membranes while Bak and Bax form high MW oligomers in the outer mitochondrial membrane in high glucose, suggesting pore formation. MLKL, Bax, and Drp1 promoted cytochrome c release from the mitochondria as well as a decrease in mitochondrial membrane potential in high glucose. These results indicate that mitochondrial trafficking of RIP1, MLKL, Bak, Bax, and Drp1 are key events in the hyperglycemic shift from apoptosis to necroptosis. This is also the first report to show oligomerization of MLKL in the inner and outer mitochondrial membranes and dependence of mitochondrial permeability on MLKL.


Subject(s)
Mitochondrial Membranes , Necroptosis , Mitochondrial Membranes/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis , Mitochondria/metabolism , Dynamins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Glucose/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
2.
Cell Death Discov ; 6(1): 132, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33298902

ABSTRACT

We have previously identified a shift from TNF-α-induced apoptosis to necroptosis that occurs under hyperglycemic conditions. This shift involves the downregulation or silencing of caspases and concurrent upregulation of necroptotic proteins leading to activation of the necrosome. In addition, under hyperglycemic conditions in vivo, this shift in cell death mechanisms exacerbates neonatal hypoxia-ischemia (HI) brain injury. Here, we identify two major factors that drive the hyperglycemic shift to necroptosis: (1) reactive oxygen species (ROS) and (2) receptor-interacting protein kinase 1 (RIP1). ROS, including mitochondrial superoxide, led to the oxidation of RIP1, as well as formation and activation of the necrosome. Concurrently, ROS mediate a decrease in the levels and activation of executioner caspases-3, -6, and -7. Importantly, hyperglycemia and mitochondrial ROS result in the oxidation of RIP1 and loss of executioner caspases prior to death receptor engagement by TNF-α. Moreover, RIP1 partially controlled levels of mitochondrial ROS in the context of hyperglycemia. As a result of its regulation of ROS, RIP1 also regulated necrosome activation and caspase loss. Mitochondrial ROS exacerbated neonatal HI-brain injury in hyperglycemic mice, as a result of the shift from apoptosis to necroptosis.

3.
Cell Physiol Biochem ; 53(3): 496-507, 2019.
Article in English | MEDLINE | ID: mdl-31486324

ABSTRACT

BACKGROUND/AIMS: Like nucleated cells, erythrocytes (red blood cells, RBCs) are capable of executing programmed cell death pathways. RBCs undergo necroptosis in response to CD59-specific pore-forming toxins (PFTs). The relationship between blood bank storage and RBC necroptosis was explored in this study. METHODS: Human RBCs were stored in standard blood bank additive solutions (AS-1, AS-3, or AS-5) for 1 week and hemolysis was evaluated in the context of necroptosis inhibitors and reactive oxygen species (ROS) scavengers. Activation of key factors including RIP1, RIP3, and MLKL was determined using immunoprecipitations and western blot. RBC vesiculation and formation of echinocytes was determined using phase-contrast microscopy. The effect of necroptosis and storage on RBC clearance was determined using a murine transfusion model. RESULTS: Necroptosis is associated with increased RBC clearance post-transfusion. Moreover, storage in AS-1, AS-3, or AS-5 sensitizes RBCs for necroptosis. Importantly, storage-sensitized RBCs undergo necroptosis in response to multiple PFTs, regardless of specificity for CD59. Storage-sensitized RBCs undergo necroptosis via NADPH oxidase-generated ROS. RBC storage led to RIP1 phosphorylation and necrosome formation in an NADPH oxidase-dependent manner suggesting the basis for this sensitization. In addition, storage led to increased RBC clearance post-transfusion. Clearance of these RBCs was due to Syk-dependent echinocyte formation. CONCLUSION: Storage-induced sensitization to RBC necroptosis and clearance is important as it may be relevant to hemolytic transfusion reactions.


Subject(s)
CD59 Antigens/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Necrosis/metabolism , Adjuvants, Immunologic , Animals , Apoptosis/physiology , Blood Banks , Blotting, Western , Cell Death/genetics , Cell Death/physiology , Cells, Cultured , Hemolysis/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/genetics , Phosphorylation/physiology , Reactive Oxygen Species/metabolism
4.
Toxins (Basel) ; 11(8)2019 08 01.
Article in English | MEDLINE | ID: mdl-31374990

ABSTRACT

Ricin is a member of the ribosome-inactivating protein (RIP) family of toxins and is classified as a biothreat agent by the Centers for Disease Control and Prevention (CDC). Inhalation, the most potent route of toxicity, triggers an acute respiratory distress-like syndrome that coincides with near complete destruction of the lung epithelium. We previously demonstrated that the TNF-related apoptosis-inducing ligand (TRAIL; CD253) sensitizes human lung epithelial cells to ricin-induced death. Here, we report that ricin/TRAIL-mediated cell death occurs via apoptosis and involves caspases -3, -7, -8, and -9, but not caspase-6. In addition, we show that two other TNF family members, TNF-α and Fas ligand (FasL), also sensitize human lung epithelial cells to ricin-induced death. While ricin/TNF-α- and ricin/FasL-mediated killing of A549 cells was inhibited by the pan-caspase inhibitor, zVAD-fmk, evidence suggests that these pathways were not caspase-dependent apoptosis. We also ruled out necroptosis and pyroptosis. Rather, the combination of ricin plus TNF-α or FasL induced cathepsin-dependent cell death, as evidenced by the use of several pharmacologic inhibitors. We postulate that the effects of zVAD-fmk were due to the molecule's known off-target effects on cathepsin activity. This work demonstrates that ricin-induced lung epithelial cell killing occurs by distinct cell death pathways dependent on the presence of different sensitizing cytokines, TRAIL, TNF-α, or FasL.


Subject(s)
Fas Ligand Protein/toxicity , Ricin/toxicity , TNF-Related Apoptosis-Inducing Ligand/toxicity , Tumor Necrosis Factor-alpha/toxicity , A549 Cells , Amino Acid Chloromethyl Ketones/pharmacology , Caspase Inhibitors/pharmacology , Cell Death/drug effects , Humans , Lung/cytology , U937 Cells
5.
J Vis Exp ; (143)2019 01 18.
Article in English | MEDLINE | ID: mdl-30735201

ABSTRACT

In this protocol we detail a method to obtain subcellular fractions of U937 cells without the use of ultracentrifugation or indiscriminate detergents. This method utilizes hypotonic buffers, digitonin, mechanical lysis and differential centrifugation to isolate the cytoplasm, mitochondria and plasma membrane. The process can be scaled to accommodate the needs of researchers, is inexpensive and straightforward. This method will allow researchers to determine protein localization in cells without specialized centrifuges and without the use of commercial kits, both of which can be prohibitively expensive. We have successfully used this method to separate cytosolic, plasma membrane and mitochondrial proteins in the human monocyte cell line U937.


Subject(s)
Cell Fractionation/methods , Centrifugation/methods , Buffers , Cell Membrane/metabolism , Cytosol/metabolism , Humans , Mitochondria/metabolism , Subcellular Fractions/metabolism , U937 Cells
6.
Cell Death Discov ; 4: 55, 2018.
Article in English | MEDLINE | ID: mdl-29760953

ABSTRACT

Apoptosis and necroptosis are the primary modes of eukaryotic cell death, with apoptosis being non-inflammatory while necroptosis is highly inflammatory. We previously demonstrated that, once activated, necroptosis is enhanced by hyperglycemia in several cell types. Here, we determine if hyperglycemia affects apoptosis similarly. We show that hyperglycemia does not enhance extrinsic apoptosis but potentiates a shift to RIP1-dependent necroptosis. This is due to increased levels and activity of RIP1, RIP3, and MLKL, as well as decreased levels and activity of executioner caspases under hyperglycemic conditions following stimulation of apoptosis. Cell death under hyperglycemic conditions was classified as necroptosis via measurement of markers and involvement of RIP1, RIP3, and MLKL. The shift to necroptosis was driven by RIP1, as mutation of this gene using CRISPR-Cas9 caused cell death to revert to apoptosis under hyperglycemic conditions. The shift of apoptosis to necroptosis depended on glycolysis and production of mitochondrial ROS. Importantly, the shift in PCD was observed in primary human T cells. Levels of RIP1 and MLKL increased, while executioner caspases and PARP1 cleavage decreased, in cerebral tissue from hyperglycemic neonatal mice that underwent hypoxia-ischemia (HI) brain injury, suggesting that this cell death shift occurs in vivo. This is significant as it demonstrates a shift from non-inflammatory to inflammatory cell death which may explain the exacerbation of neonatal HI-brain injury during hyperglycemia. These results are distinct from our previous findings where hyperglycemia enhanced necroptosis under conditions where apoptosis was inhibited artificially. Here we demonstrate a shift from apoptosis to necroptosis under hyperglycemic conditions while both pathways are fully active. Therefore, while our previous work documented that intensity of necroptosis is responsive to glucose, this work sheds light on the molecular balance between apoptosis and necroptosis and identifies hyperglycemia as a condition that pushes cells to undergo necroptosis despite the initial activation of apoptosis.

7.
Mol Microbiol ; 107(4): 523-541, 2018 02.
Article in English | MEDLINE | ID: mdl-29240272

ABSTRACT

Francisella tularensis is a highly virulent Gram-negative bacterial pathogen that causes the zoonotic disease tularemia. F. novicida, a model tularemia strain, produces spherical outer membrane vesicles (OMV), as well as novel tubular vesicles and extensions of the cell surface. These OMV and tubes (OMV/T) are produced in a regulated manner and contain known virulence factors. Mechanisms by which bacterial vesicles are produced and regulated are not well understood. We performed a genetic screen in F. novicida to decipher the molecular basis for regulated OMV/T formation, and identified both hypo- and hyper-vesiculating mutants. Mutations in fumA and tktA, involved in central carbon metabolism, and in FTN_0908 and FTN_1037, of unknown function, resulted in severe defects in OMV/T production. Cysteine deprivation was identified as the signal that triggers OMV/T formation in F. novicida during growth in rich medium. We also found that fully virulent F. tularensis produces OMV/T in a similarly regulated manner. Further analysis revealed that OMV/T production is responsive to deprivation of essential amino acids in addition to cysteine, and that the hypo-vesiculating mutants are defective in responding to this signal. Thus, amino acid starvation, such as encountered by Francisella during host cell invasion, regulates the production of membrane-derived structures.


Subject(s)
Amino Acids, Essential/metabolism , Carbon/metabolism , Cell Membrane/ultrastructure , Cysteine/deficiency , Extracellular Vesicles/metabolism , Francisella/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Francisella/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Proteomics , Virulence Factors/metabolism
8.
PLoS One ; 11(3): e0149132, 2016.
Article in English | MEDLINE | ID: mdl-26930282

ABSTRACT

Haemophilus parasuis is a Gram-negative bacterium that colonizes the upper respiratory tract of swine and is capable of causing a systemic infection, resulting in high morbidity and mortality. H. parasuis isolates display a wide range of virulence and virulence factors are largely unknown. Commercial bacterins are often used to vaccinate swine against H. parasuis, though strain variability and lack of cross-reactivity can make this an ineffective means of protection. Outer membrane vesicles (OMV) are spherical structures naturally released from the membrane of bacteria and OMV are often enriched in toxins, signaling molecules and other bacterial components. Examination of OMV structures has led to identification of virulence factors in a number of bacteria and they have been successfully used as subunit vaccines. We have isolated OMV from both virulent and avirulent strains of H. parasuis, have examined their protein content and assessed their ability to induce an immune response in the host. Vaccination with purified OMV derived from the virulent H. parasuis Nagasaki strain provided protection against challenge with a lethal dose of the bacteria.


Subject(s)
Bacterial Vaccines/immunology , Extracellular Vesicles/immunology , Haemophilus Infections/prevention & control , Haemophilus parasuis/immunology , Animals , Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/isolation & purification , Bacterial Vaccines/isolation & purification , Cytokines/genetics , Cytokines/metabolism , Haemophilus Infections/blood , Haemophilus Infections/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Proteolysis , Sus scrofa , Transcription, Genetic , Vaccination
9.
J Bacteriol ; 195(6): 1120-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23264574

ABSTRACT

Francisella spp. are highly infectious and virulent bacteria that cause the zoonotic disease tularemia. Knowledge is lacking for the virulence factors expressed by Francisella and how these factors are secreted and delivered to host cells. Gram-negative bacteria constitutively release outer membrane vesicles (OMV), which may function in the delivery of virulence factors to host cells. We identified growth conditions under which Francisella novicida produces abundant OMV. Purification of the vesicles revealed the presence of tube-shaped vesicles in addition to typical spherical OMV, and examination of whole bacteria revealed the presence of tubes extending out from the bacterial surface. Recently, both prokaryotic and eukaryotic cells have been shown to produce membrane-enclosed projections, termed nanotubes, which appear to function in cell-cell communication and the exchange of molecules. In contrast to these previously characterized structures, the F. novicida tubes are produced in liquid as well as on solid medium and are derived from the OM rather than the cytoplasmic membrane. The production of the OMV and tubes (OMV/T) by F. novicida was coordinately regulated and responsive to both growth medium and growth phase. Proteomic analysis of purified OMV/T identified known Francisella virulence factors among the constituent proteins, suggesting roles for the vesicles in pathogenesis. In support of this, production of OM tubes by F. novicida was stimulated during infection of macrophages and addition of purified OMV/T to macrophages elicited increased release of proinflammatory cytokines. Finally, vaccination with purified OMV/T protected mice from subsequent challenge with highly lethal doses of F. novicida.


Subject(s)
Cell Surface Extensions/metabolism , Francisella/metabolism , Francisella/ultrastructure , Transport Vesicles/metabolism , Transport Vesicles/ultrastructure , Animals , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Vaccines/immunology , Cell Communication , Cell Surface Extensions/immunology , Cell Surface Extensions/ultrastructure , Culture Media , Cytokines/biosynthesis , Francisella/immunology , Francisella/pathogenicity , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/prevention & control , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Proteomics , Transport Vesicles/immunology , Vaccination , Virulence Factors/metabolism
10.
Emerg Infect Dis ; 14(7): 1097-104, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18598631

ABSTRACT

The A and B clones of Borrelia burgdorferi sensu stricto, distinguished by outer surface protein C (ospC) gene sequences, are commonly associated with disseminated Lyme disease. To resolve phylogenetic relationships among isolates, we sequenced 68 isolates from Europe and North America at 1 chromosomal locus (16S-23S ribosomal RNA spacer) and 3 plasmid loci (ospC,dbpA, and BBD14). The ospC-A clone appeared to be highly prevalent on both continents, and isolates of this clone were uniform in DNA sequences, which suggests a recent trans-oceanic migration. The genetic homogeneity of ospC-A isolates was confirmed by sequences at 6 additional chromosomal housekeeping loci (gap, alr, glpA, xylB, ackA, and tgt). In contrast, the ospC-B group consists of genotypes distinct to each continent, indicating geographic isolation. We conclude that the ospC-A clone has dispersed rapidly and widely in the recent past. The spread of the ospC-A clone may have contributed, and likely continues to contribute, to the rise of Lyme disease incidence.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Borrelia burgdorferi/genetics , Borrelia burgdorferi/pathogenicity , Virulence Factors/genetics , Europe/epidemiology , Genetic Drift , Humans , Lyme Disease/epidemiology , Lyme Disease/genetics , North America/epidemiology , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...