Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Pathol ; 33(4): 518-530, 2020 04.
Article in English | MEDLINE | ID: mdl-31558782

ABSTRACT

Programmed cell death ligand-1 (PD-L1) expression levels in patient tumor samples have proven clinical utility across various cancer types. Several independently developed PD-L1 immunohistochemical (IHC) predictive assays are commercially available. Published studies using the VENTANA PD-L1 (SP263) Assay, VENTANA PD-L1 (SP142) Assay, Dako PD-L1 IHC 22C3 pharmDx assay, Dako PD-L1 IHC 28-8 pharmDx assay, and laboratory-developed tests utilizing the E1L3N antibody (Cell Signaling Technology), have demonstrated differing levels of PD-L1 staining between assays, resulting in conjecture as to whether antibody-binding epitopes could be responsible for discordance between assays. Therefore, to understand the performance of different PD-L1 predictive immunohistochemistry assays, we aimed to distinguish the epitopes within the PD-L1 protein responsible for antibody binding. The sites at which antibody clones SP263, SP142, 22C3, 28-8, and E1L3N bind to recombinant PD-L1 were assessed using several methods, including conformational peptide array, surface plasmon resonance, and/or hydrogen/deuterium exchange mass spectrometry. Putative binding sites were confirmed by site-directed mutagenesis of PD-L1, followed by western blotting and immunohistochemical analysis of cell lines expressing mutant constructs. Our results demonstrate that clones SP263 and SP142 bind to an identical epitope in the cytoplasmic domain at the extreme C-terminus of PD-L1, distinct from 22C3 and 28-8. Using mutated PD-L1 constructs, an additional clone, E1L3N, was also found to bind to the cytoplasmic domain of PD-L1. The E1L3N binding epitope overlaps considerably with the SP263/SP142 binding site but is not identical. Clones 22C3 and 28-8 have binding profiles in the extracellular domain of PD-L1, which differ from one another. Despite identifying epitope binding variance among antibodies, evidence indicates that only the SP142 assay generates significantly discordant immunohistochemical staining, which can be resolved by altering the assay protocol. Therefore, inter-assay discordances are more likely attributable to tumor heterogeneity, assay, or platform variables rather than antibody epitope.


Subject(s)
Antibodies/immunology , Antibody Specificity , B7-H1 Antigen/immunology , Binding Sites, Antibody , Epitope Mapping , Immunohistochemistry , Neoplasms/immunology , Antibodies/metabolism , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Glycosylation , Humans , Immune Checkpoint Inhibitors/therapeutic use , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Predictive Value of Tests , Protein Binding , Reproducibility of Results
3.
Sci Rep ; 7(1): 16452, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184062

ABSTRACT

KCC2 is a neuron specific K+-Cl- co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2. Specific binding of inhibitor compound VU0463271 was demonstrated using surface plasmon resonance (SPR). Mass spectrometry revealed glycosylations and phosphorylations as expected from functional KCC2. We show by electron microscopy (EM) that KCC2 exists as monomers and dimers in solution. Monomers are organized into "head" and "core" domains connected by a flexible "linker". Dimers are asymmetrical and display a bent "S-shape" architecture made of four distinct domains and a flexible dimerization interface. Chemical crosslinking in reducing conditions shows that disulfide bridges are involved in KCC2 dimerization. Moreover, we show that adding a tag to the C-terminus is detrimental to KCC2 function. We postulate that the conserved KCC2 C-ter may be at the interface of dimerization. Taken together, our findings highlight the flexible multi-domain structure of KCC2 with variable anchoring points at the dimerization interface and an important C-ter extremity providing the first in-depth functional architecture of KCC2.

4.
Drug Discov Today ; 19(10): 1518-29, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24858015

ABSTRACT

The provision of high-quality eukaryotic cells through robust cell banking processes is essential for the progression of drug discovery projects throughout the pharmaceutical research process. Numerous models exist to meet this aim, and this review describes many of the underlying principles, challenges and opportunities as well as detailing how these have been addressed within AstraZeneca. Crucial aspects discussed include cell line acquisition, cell bank generation, cryopreservation, storage, tracking and distribution. Because quality assurance underpins much of the process, quality control (QC) testing including mycoplasma screening and cell line authentication are also discussed in detail. Furthermore, because many of the underlying principles of cell banking are applicable in non-pharmaceutical settings, it is hoped that this review will prove a useful resource across the wider scientific community.


Subject(s)
Biological Specimen Banks , Biomedical Research , Cell Line , Humans , Specimen Handling
5.
Protein Expr Purif ; 83(2): 217-25, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22542589

ABSTRACT

The activity of kinases is regulated by phosphorylation on Ser, Thr or Tyr residues within the activation loop. The ability to produce these enzymes recombinantly with a specific phosphorylation status is essential in order to understand structure and function. In this paper we describe a screening approach to co-express different phosphatases together with a kinase in the baculovirus expression system. This enabled the testing of different phosphatases as well as different levels of both phosphatase and kinase by varying the multiplicity of infection (MOI) of the different baculoviruses. This approach translated well to a larger scale. An unexpected observation was that co-expression of the phosphatase could have profound effects on expression levels even of heterologous target proteins that would not be a substrate for the phosphatase. This was most apparent with lambda phosphatase, an enzyme that removes phosphorylation from Ser and Thr residues, where expression was almost completely abolished for all proteins, even at modest MOIs. The effect of lambda phosphatase was observed irrespective of whether co-expression was from two separate baculoviruses or from two genes on the same vector. The effect was shown to be due, in part at least, to a decrease in transcription.


Subject(s)
Baculoviridae/genetics , Phosphoprotein Phosphatases/biosynthesis , Protein Tyrosine Phosphatases/biosynthesis , Recombinant Proteins/biosynthesis , Spodoptera/metabolism , Animals , Cell Line , Genetic Vectors , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/isolation & purification , Polymerase Chain Reaction , Protein Isoforms , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/isolation & purification , Receptor, EphB1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spodoptera/genetics , Spodoptera/virology
6.
Protein Expr Purif ; 42(1): 29-36, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15939290

ABSTRACT

Recombinant baculoviruses have proved to be a very useful means to express many proteins over the last 20 years. Since their introduction, there have been a number of significant improvements that have simplified and speeded up the construction of baculoviruses. One of the most commonly used methods relies upon recombination with the baculovirus genome maintained in Escherichia coli. In this paper, we report the conversion of nearly all the steps in this process including the expression testing and purification to a multi-well plate format. This enables a significant increase in the number of constructs that can be processed in a shorter period of time and an order of magnitude increase in the number of expression conditions that can be analysed. A key step in our process is that the transfection is done in suspension rather than adherent cells, which gives a much higher virus titre than in the standard methods.


Subject(s)
Baculoviridae/genetics , Gene Expression/genetics , Recombinant Proteins/biosynthesis , Animals , Cell Culture Techniques/methods , Cell Line , Cell Proliferation , Escherichia coli/genetics , Genetic Vectors/genetics , Histidine/genetics , Recombinant Proteins/isolation & purification , Reproducibility of Results , Spodoptera , Transfection/methods
7.
Structure ; 12(1): 75-84, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14725767

ABSTRACT

Human thymidine phosphorylase (HTP), also known as platelet-derived endothelial cell growth factor (PD-ECGF), is overexpressed in certain solid tumors where it is linked to poor prognosis. HTP expression is utilized for certain chemotherapeutic strategies and is also thought to play a role in tumor angiogenesis. We determined the structure of HTP bound to the small molecule inhibitor 5-chloro-6-[1-(2-iminopyrrolidinyl) methyl] uracil hydrochloride (TPI). The inhibitor appears to mimic the substrate transition state, which may help explain the potency of this inhibitor and the catalytic mechanism of pyrimidine nucleotide phosphorylases (PYNPs). Further, we have confirmed the validity of the HTP structure as a template for structure-based drug design by predicting binding affinities for TPI and other known HTP inhibitors using in silico docking techniques. This work provides the first structural insight into the binding mode of any inhibitor to this important drug target and forms the basis for designing novel inhibitors for use in anticancer therapy.


Subject(s)
Models, Molecular , Protein Binding , Protein Folding , Pyrrolidines/chemistry , Thymidine Phosphorylase/metabolism , Uracil/analogs & derivatives , Uracil/chemistry , Crystallization , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Protein Structure, Tertiary , Pyrrolidines/pharmacology , Uracil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...