Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38798659

ABSTRACT

Chagas disease (CD) is a neglected tropical disease caused by the parasitic protozoan Trypanosoma cruzi. However, only 20% to 30% of infected individuals will progress to severe symptomatic cardiac manifestations. Current treatments are benznidazole and nifurtimox, which are poorly tolerated regimens. Developing a biomarker to determine the likelihood of patient progression would be helpful for doctors to optimize patient treatment strategies. Such a biomarker would also benefit drug discovery efforts and clinical trials. In this study, we combined untargeted and targeted metabolomics to compare serum samples from T. cruzi-infected individuals who progressed to severe cardiac disease, versus infected individuals who remained at the same disease stage (non-progressors). We identified four unannotated biomarker candidates, which were validated in an independent cohort using both untargeted and targeted analysis techniques. Overall, our findings demonstrate that serum small molecules can predict CD progression, offering potential for clinical monitoring.

2.
PLoS Pathog ; 20(3): e1012012, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457443

ABSTRACT

Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.


Subject(s)
Chagas Disease , Microbiota , Trypanosoma cruzi , Animals , Humans , Gene-Environment Interaction , Chagas Disease/metabolism , Trypanosoma cruzi/metabolism , Disease Progression , Mammals
3.
Microbiol Mol Biol Rev ; 88(1): e0016422, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38299836

ABSTRACT

SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Parasites , Plasmodium , Toxoplasma , Animals , Humans , Toxoplasma/metabolism , Immunity , Protozoan Proteins/metabolism
4.
Methods ; 222: 81-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185226

ABSTRACT

Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Microbiota/genetics , Fatty Acids, Volatile/metabolism , Methylamines/metabolism
5.
ACS Infect Dis ; 9(11): 2173-2189, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37883691

ABSTRACT

Chagas disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry of clinically accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status across mouse and parasite genotypes. Metabolites perturbed by infection in urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for the assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had an overall urine metabolome comparable to that of mice that failed to clear parasites. These results provide a complementary hypothesis to explain clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease, even in patients with successful parasite clearance. Overall, this study provides insights into new small-molecule-based CD diagnostic methods and a new approach to assess functional responses to treatment.


Subject(s)
Chagas Disease , Parasites , Trypanocidal Agents , Trypanosoma cruzi , Humans , Mice , Animals , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Chagas Disease/parasitology
6.
Nat Commun ; 14(1): 6769, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880260

ABSTRACT

Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Animals , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Heart , Disease Progression
7.
bioRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37425694

ABSTRACT

Chagas Disease (CD), caused by Trypanosoma cruzi (T. cruzi) protozoa, is a complicated parasitic illness with inadequate medical measures for diagnosing infection and monitoring treatment success. To address this gap, we analyzed changes in the metabolome of T. cruzi-infected mice via liquid chromatography tandem mass spectrometry analysis of clinically-accessible biofluids: saliva, urine, and plasma. Urine was the most indicative of infection status, across mouse and parasite genotypes. Metabolites perturbed by infection in the urine include kynurenate, acylcarnitines, and threonylcarbamoyladenosine. Based on these results, we sought to implement urine as a tool for assessment of CD treatment success. Strikingly, it was found that mice with parasite clearance following benznidazole antiparasitic treatment had comparable overall urine metabolome to mice that failed to clear parasites. These results match with clinical trial data in which benznidazole treatment did not improve patient outcomes in late-stage disease. Overall, this study provides insights into new small molecule-based CD diagnostic methods and a new approach to assess functional treatment response.

8.
J Am Soc Mass Spectrom ; 34(9): 1847-1857, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37289200

ABSTRACT

Concerns about ion suppression, spectral contamination, or interference have led to avoidance of polymers in mass spectrometry (MS)-based metabolomics. This avoidance, however, has left many biochemical fields underexplored, including wounds, which are often treated with adhesive bandages. Here, we found that despite previous concerns, the addition of an adhesive bandage can still result in biologically informative MS data. Initially, a test LC-MS analysis was performed on a mixture of known chemical standards and a polymer bandage extract. Results demonstrated successful removal of many polymer-associated features through a data processing step. Furthermore, the bandage presence did not interfere with metabolite annotation. This method was then implemented in the context of murine surgical wound infections covered with an adhesive bandage and inoculated with Staphylococcus aureus, Pseudomonas aeruginosa, or a 1:1 mix of these pathogens. Metabolites were extracted and analyzed by LC-MS. On the bandage side, we observed a greater impact of infection on the metabolome. Distance analysis showed significant differences between all conditions and demonstrated that coinfected samples were more similar to S. aureus-infected samples compared to P. aeruginosa-infected samples. We also found that coinfection was not merely a summative effect of each monoinfection. Overall, these results represent an expansion of LC-MS-based metabolomics to a novel, previously under-investigated class of samples, leading to actionable biological information.


Subject(s)
Staphylococcus aureus , Wound Infection , Mice , Animals , Staphylococcus aureus/metabolism , Metabolomics/methods , Bandages , Metabolome
10.
Article in English | MEDLINE | ID: mdl-36818551

ABSTRACT

Introduction: Leishmaniasis is a parasitic disease that affects more than 1 million people worldwide annually, predominantly in resource-limited settings. The challenge in compound development is to exhibit potent activity against the intracellular stage of the parasite (the stage present in the mammalian host) without harming the infected host cells. We have identified a compound series (pyrazolopyrrolidinones) active against the intracellular parasites of Leishmania donovani and L. major; the causative agents of visceral and cutaneous leishmaniasis in the Old World, respectively. Methods: In this study, we performed medicinal chemistry on a newly discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties. Results and discussion: Members of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 µM without harming the host macrophage up to 10.0 µM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 µM) while being cytotoxic to the host cell at 5.0 µM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK's criteria to be defined as a potential lead drug series for leishmaniasis. Conclusion: Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.

11.
Res Sq ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711878

ABSTRACT

Post-infectious conditions, where clinical symptoms fail to resolve even after pathogen clearance, present major health burdens. However, the mechanisms involved remain poorly understood. In Chagas disease (CD), caused by the parasite Trypanosoma cruzi, antiparasitic agents can clear T. cruzi but late-stage treatment does not improve clinical cardiac outcomes. In this study, we revealed differential metabolic trajectories of cardiac regions during T. cruzi infection, matching sites of clinical symptoms. Incomplete, region-specific, cardiac metabolic restoration was observed in animals treated with the antiparasitic benznidazole, even though parasites were successfully cleared. In contrast, superior metabolic restoration was observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy (Tc24-C4 T. cruzi flagellar protein and TLR4 agonist adjuvant), even though parasite burden reduction was lower. Overall, these results provide a mechanism to explain prior clinical treatment failures in CD and to test novel candidate treatment regimens. More broadly, our results demonstrate a link between persistent metabolic perturbation and post-infectious conditions, with broad implications for our understanding of post-infectious disease sequelae.

12.
mSystems ; 7(6): e0071022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36416540

ABSTRACT

The metabolome is a central determinant of human phenotypes and includes the plethora of small molecules produced by host and microbiome or taken up from exogenous sources. However, studies of the metabolome have so far focused predominantly on urban, industrialized populations. Through an untargeted metabolomic analysis of 90 fecal samples from human individuals from Africa and the Americas-the birthplace and the last continental expansion of our species, respectively-we characterized a shared human fecal metabolome. The majority of detected metabolite features were ubiquitous across populations, despite any geographic, dietary, or behavioral differences. Such shared metabolite features included hyocholic acid and cholesterol. However, any characterization of the shared human fecal metabolome is insufficient without exploring the influence of industrialization. Here, we show chemical differences along an industrialization gradient, where the degree of industrialization correlates with metabolomic changes. We identified differential metabolite features such as amino acid-conjugated bile acids and urobilin as major metabolic correlates of these behavioral shifts. Additionally, coanalyses with over 5,000 publicly available human fecal samples and cooccurrence probability analyses with the gut microbiome highlight connections between the human fecal metabolome and gut microbiome. Our results indicate that industrialization significantly influences the human fecal metabolome, but diverse human lifestyles and behavior still maintain a shared human fecal metabolome. This study represents the first characterization of the shared human fecal metabolome through untargeted analyses of populations along an industrialization gradient. IMPORTANCE As the world becomes increasingly industrialized, understanding the biological consequences of these lifestyle shifts and what it means for past, present, and future human health is critical. Indeed, industrialization is associated with rises in allergic and autoimmune health conditions and reduced microbial diversity. Exploring these health effects on a chemical level requires consideration of human lifestyle diversity, but understanding the significance of any differences also requires knowledge of what molecular components are shared between human groups. Our study reveals the key chemistry of the human gut as defined by varied industrialization-based differences and ubiquitous shared features. Ultimately, these novel findings extend our knowledge of human molecular biology, especially as it is influenced by lifestyle and behavior, and provide steps toward understanding how human biology has changed over our species' history.


Subject(s)
Industrial Development , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Metabolomics/methods , Metabolome , Microbiota/genetics
13.
Metabolomics ; 18(10): 77, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36181583

ABSTRACT

Single cell metabolomics is an emerging and rapidly developing field that complements developments in single cell analysis by genomics and proteomics. Major goals include mapping and quantifying the metabolome in sufficient detail to provide useful information about cellular function in highly heterogeneous systems such as tissue, ultimately with spatial resolution at the individual cell level. The chemical diversity and dynamic range of metabolites poses particular challenges for detection, identification and quantification. In this review we discuss both significant technical issues of measurement and interpretation, and progress toward addressing them, with recent examples from diverse biological systems. We provide a framework for further directions aimed at improving workflow and robustness so that such analyses may become commonly applied, especially in combination with metabolic imaging and single cell transcriptomics and proteomics.


Subject(s)
Metabolome , Metabolomics , Metabolomics/methods , Proteomics , Workflow
14.
Metabolites ; 12(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36144206

ABSTRACT

Leishmania is an intracellular parasite with different species pathogenic to humans and causing the disease leishmaniasis. Leishmania donovani causes visceral leishmaniasis (VL) that manifests as hepatosplenomegaly, fever, pancytopenia and hypergammaglobulinemia. If left without treatment, VL can cause death, especially in immunocompromised people. Current treatments have often significant adverse effects, and resistance has been reported in some countries. Determining the metabolites perturbed during VL can lead us to find new treatments targeting disease pathogenesis. We therefore compared metabolic perturbation between L. donovani-infected and uninfected hamsters across organs (spleen, liver, and gut). Metabolites were extracted, analyzed by liquid chromatography-mass spectrometry, and processed with MZmine and molecular networking to annotate metabolites. We found few metabolites commonly impacted by infection across all three sites, including glycerophospholipids, ceramides, acylcarnitines, peptides, purines and amino acids. In accordance with VL symptoms and parasite tropism, we found a greater overlap of perturbed metabolites between spleen and liver compared to spleen and gut, or liver and gut. Targeting pathways related to these metabolite families would be the next focus that can lead us to find more effective treatments for VL.

15.
Anal Chem ; 94(30): 10567-10572, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35863111

ABSTRACT

Cellular heterogeneity is generally overlooked in infectious diseases. In this study, we investigated host cell heterogeneity during infection with Trypanosoma cruzi (T. cruzi) parasites, causative agents of Chagas disease (CD). In chronic-stage CD, only a few host cells are infected with a large load of parasites and symptoms may appear at sites distal to parasite colonization. Furthermore, recent work has revealed T. cruzi heterogeneity with regard to replication rates and drug susceptibility. However, the role of cellular-level metabolic heterogeneity in these processes has yet to be assessed. To fill this knowledge gap, we developed a Single-probe SCMS (single-cell mass spectrometry) method compatible with biosafety protocols, to acquire metabolomics data from individual cells during T. cruzi infection. This study revealed heterogeneity in the metabolic response of the host cells to T. cruzi infection in vitro. Our results showed that parasite-infected cells possessed divergent metabolism compared to control cells. Strikingly, some uninfected cells adjacent to infected cells showed metabolic impacts as well. Specific metabolic changes include increases in glycerophospholipids with infection. These results provide novel insight into the pathogenesis of CD. Furthermore, they represent the first application of bioanalytical SCMS to the study of mammalian-infectious agents, with the potential for broad applications to study infectious diseases.


Subject(s)
Chagas Disease , Communicable Diseases , Trypanosoma cruzi , Animals , Chagas Disease/parasitology , Mammals , Mass Spectrometry , Metabolomics
16.
mSystems ; 7(4): e0035322, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35730946

ABSTRACT

The influenza virus (IAV) is a major cause of respiratory disease, with significant infection increases in pandemic years. Vaccines are a mainstay of IAV prevention but are complicated by IAV's vast strain diversity and manufacturing and vaccine uptake limitations. While antivirals may be used for treatment of IAV, they are most effective in early stages of the infection, and several virus strains have become drug resistant. Therefore, there is a need for advances in IAV treatment, especially host-directed therapeutics. Given the spatial dynamics of IAV infection and the relationship between viral spatial distribution and disease severity, a spatial approach is necessary to expand our understanding of IAV pathogenesis. We used spatial metabolomics to address this issue. Spatial metabolomics combines liquid chromatography-tandem mass spectrometry of metabolites extracted from systematic organ sections, 3D models, and computational techniques to develop spatial models of metabolite location and their role in organ function and disease pathogenesis. In this project, we analyzed serum and systematically sectioned lung tissue samples from uninfected or infected mice. Spatial mapping of sites of metabolic perturbations revealed significantly lower metabolic perturbation in the trachea compared to other lung tissue sites. Using random forest machine learning, we identified metabolites that responded differently in each lung position based on infection, including specific amino acids, lipids and lipid-like molecules, and nucleosides. These results support the implementation of spatial metabolomics to understand metabolic changes upon respiratory virus infection. IMPORTANCE The influenza virus is a major health concern. Over 1 billion people become infected annually despite the wide distribution of vaccines, and antiviral agents are insufficient to address current clinical needs. In this study, we used spatial metabolomics to understand changes in the lung and serum metabolome of mice infected with influenza A virus compared to uninfected controls. We determined metabolites altered by infection in specific lung tissue sites and distinguished metabolites perturbed by infection between lung tissue and serum samples. Our findings highlight the utility of a spatial approach to understanding the intersection between the lung metabolome, viral infection, and disease severity. Ultimately, this approach will expand our understanding of respiratory disease pathogenesis.


Subject(s)
Communicable Diseases , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Influenza, Human/pathology , Lung , Metabolome , Communicable Diseases/pathology , Antiviral Agents/pharmacology
17.
ACS Omega ; 7(9): 7675-7682, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35284725

ABSTRACT

Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.

18.
J Vis Exp ; (179)2022 01 21.
Article in English | MEDLINE | ID: mdl-35129167

ABSTRACT

Pathogen tropism and disease tropism refer to the tissue locations selectively colonized or damaged by pathogens, leading to localized disease symptoms. Human-infective trypanosomatid parasites include Trypanosoma cruzi, the causative agent of Chagas disease; Trypanosoma brucei, the causative agent of sleeping sickness; and Leishmania species, causative agents of leishmaniasis. Jointly, they affect 20 million people across the globe. These parasites show specific tropism: heart, esophagus, colon for T. cruzi, adipose tissue, pancreas, skin, circulatory system and central nervous system for T. brucei, skin for dermotropic Leishmania strains, and liver, spleen, and bone marrow for viscerotropic Leishmania strains. A spatial perspective is therefore essential to understand trypanosomatid disease pathogenesis. Chemical cartography generates 3D visualizations of small molecule abundance generated via liquid chromatography-mass spectrometry, in comparison to microbiological and immunological parameters. This protocol demonstrates how chemical cartography can be applied to study pathogenic processes during trypanosomatid infection, beginning from systematic tissue sampling and metabolite extraction, followed by liquid chromatography-tandem mass spectrometry data acquisition, and concluding with the generation of 3D maps of metabolite distribution. This method can be used for multiple research questions, such as nutrient requirements for tissue colonization by T. cruzi, T. brucei, or Leishmania, immunometabolism at sites of infection, and the relationship between local tissue metabolic perturbation and clinical disease symptoms, leading to comprehensive insight into trypanosomatid disease pathogenesis.


Subject(s)
Chagas Disease , Leishmania , Leishmaniasis , Trypanosoma brucei brucei , Trypanosoma cruzi , Humans , Trypanosoma brucei brucei/metabolism , Trypanosoma cruzi/metabolism
19.
Methods Enzymol ; 663: 341-375, 2022.
Article in English | MEDLINE | ID: mdl-35168796

ABSTRACT

Small molecule metabolites are the product of many enzymatic reactions. Metabolomics thus opens a window into enzyme activity and function, integrating effects at the post-translational, proteome, transcriptome and genome level. In addition, small molecules can themselves regulate enzyme activity, expression and function both via substrate availability mechanisms and through allosteric regulation. Metabolites are therefore at the nexus of infectious diseases, regulating nutrient availability to the pathogen, immune responses, tropism, and host disease tolerance and resilience. Analysis of metabolomics data is however complex, particularly in terms of metabolite annotation. An emerging valuable approach to extend metabolite annotations beyond existing compound libraries and to identify infection-induced chemical changes is molecular networking. In this chapter, we discuss the applications of molecular networking in the context of infectious diseases specifically, with a focus on considerations relevant to these biological systems.


Subject(s)
Communicable Diseases , Tandem Mass Spectrometry , Humans , Metabolomics
20.
J Am Soc Mass Spectrom ; 33(3): 412-419, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35084848

ABSTRACT

Workplace chemical exposures are a major source of occupational injury. Although over half of these are skin exposures, exposomics research often focuses on chemical levels in the air or in worker biofluids such as blood and urine. Until now, one limitation has been the lack of methods to quantitatively measure surface chemical transfer. Outside the realm of harmful chemicals, the small molecules we leave behind on surfaces can also reveal important aspects of human behavior. In this study, we developed a swab-based quantitative approach to determine small molecule concentrations across common surfaces. We demonstrate its utility using one drug, cyclobenzaprine, on metal surfaces, and two human-derived metabolites, carnitine and phenylacetylglutamine, on four common surfaces: linoleum flooring, plastified laboratory workbench, metal, and Plexiglas. We observed peak areas proportional to surface analyte concentrations at 45 min and 1 week after deposition, enabling quantification of molecule abundance on workplace built environment surfaces. In contrast, this method was unsuitable for analysis of oleanolic acid, for which we did not observe a strong linear proportional relationship following swab-based recovery from surfaces. Overall, this method paves the way for future quantitative exposomics studies in analyte-specific and surface-specific frameworks.


Subject(s)
Environmental Exposure/analysis , Environmental Monitoring/methods , Workplace , Amitriptyline/analogs & derivatives , Amitriptyline/analysis , Amitriptyline/metabolism , Carnitine/analysis , Carnitine/metabolism , Glutamine/analogs & derivatives , Glutamine/analysis , Glutamine/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...