Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(4): e0245655, 2021.
Article in English | MEDLINE | ID: mdl-33848298

ABSTRACT

The ability to accurately identify infected hosts is the cornerstone of effective disease control and eradication programs. In the case of bovine tuberculosis, accurately identifying infected individual animals has been challenging as all available tests exhibit limited discriminatory ability. Here we assess the utility of two serological tests (IDEXX Mycobacterium bovis Ab test and Enfer multiplex antibody assay) and assess their performance relative to skin test (Single Intradermal Comparative Cervical Tuberculin; SICCT), gamma-interferon (IFNγ) and post-mortem results in a Northern Ireland setting. Furthermore, we describe a case-study where one test was used in conjunction with statutory testing. Serological tests using samples taken prior to SICCT disclosed low proportions of animals as test positive (mean 3% positive), despite the cohort having high proportions with positive SICCT test under standard interpretation (121/921; 13%) or IFNγ (365/922; 40%) results. Furthermore, for animals with a post-mortem record (n = 286), there was a high proportion with TB visible lesions (27%) or with laboratory confirmed infection (25%). As a result, apparent sensitivities within this cohort was very low (≤15%), however the tests succeeded in achieving very high specificities (96-100%). During the case-study, 7/670 (1.04%) samples from SICCT negative animals from a large chronically infected herd were serology positive, with a further 17 animals being borderline positive (17/670; 2.54%). Nine of the borderline animals were voluntarily removed, none of which were found to be infected post-mortem (no lesions/bacteriology negative). One serology test negative animal was subsequently found to have lesions at slaughter with M. bovis confirmed in the laboratory.


Subject(s)
Cattle/blood , Mycobacterium bovis/isolation & purification , Tuberculosis, Bovine/blood , Tuberculosis, Bovine/diagnosis , Animals , Cattle/microbiology , Female , Male , Northern Ireland/epidemiology , Serologic Tests , Tuberculin Test , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/microbiology
2.
J Clin Microbiol ; 55(12): 3411-3425, 2017 12.
Article in English | MEDLINE | ID: mdl-28954900

ABSTRACT

A novel lateral flow immunochromatographic device (LFD) was evaluated in several veterinary diagnostic laboratories. It was confirmed to be specific for Mycobacterium bovis and M.caprae cells. The performance of the novel LFD was assessed relative to the confirmatory tests routinely applied after culture (spoligotyping or quantitative PCR [qPCR]) in each laboratory; liquid (MGIT or BacT/Alert) and/or solid (Stonebrink, Coletsos, or Lowenstein-Jensen) cultures were tested. In comparison to spoligotyping of acid-fast-positive MGIT cultures, percent agreement between positive LFD and spoligotyping results was excellent in two United Kingdom laboratories (97.7 to 100%) but lower in the Spanish context (76%), where spoligotyping was applied to MGIT cultures previously confirmed to be positive for M. tuberculosis complex (MTBC) by qPCR. Certain spoligotypes of M. bovis and M. caprae were not detected by the LFD in Spanish MGIT cultures. Compared to qPCR confirmation, the agreement between positive LFD and qPCR results was 42.3% and 50% for BacT/Alert and MGIT liquid cultures, respectively, and for solid cultures, it ranged from 11.1 to 89.2%, depending on the solid medium employed (Coletsos, 11.1%; Lowenstein-Jensen, 55.6%; Stonebrinks, 89.2%). Correlation between the novel LFD and BD MGIT TBc Identification test results was excellent when 190 MGIT cultures were tested (r = 0.9791; P < 0.0001), with the added benefit that M. bovis was differentiated from another MTBC species in one MGIT culture by the novel LFD. This multilaboratory evaluation demonstrated the novel LFD's potential utility as a rapid test to confirm isolation of M. bovis and M. caprae from veterinary specimens following culture.


Subject(s)
Chromatography, Affinity/methods , Mycobacterium bovis/isolation & purification , Tuberculosis, Bovine/diagnosis , Veterinary Medicine/methods , Animals , Cattle , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Spain , United Kingdom
3.
PLoS One ; 8(3): e58374, 2013.
Article in English | MEDLINE | ID: mdl-23469275

ABSTRACT

Immunomagnetic separation (IMS) can selectively isolate and concentrate Mycobacterium bovis cells from lymph node tissue to facilitate subsequent detection by PCR (IMS-PCR) or culture (IMS-MGIT). This study describes application of these novel IMS-based methods to test for M. bovis in a survey of 280 bovine lymph nodes (206 visibly lesioned (VL), 74 non-visibly lesioned (NVL)) collected at slaughter as part of the Northern Ireland bovine TB eradication programme. Their performance was evaluated relative to culture. Overall, 174 (62.1%) lymph node samples tested positive by culture, 162 (57.8%) by IMS-PCR (targeting IS6110), and 191 (68.2%) by IMS-MGIT culture. Twelve (6.9%) of the 174 culture positive lymph node samples were not detected by either of the IMS-based methods. However, an additional 79 M. bovis positive lymph node samples (27 (13.1%) VL and 52 (70.3%) NVL) were detected by the IMS-based methods and not by culture. When low numbers of viable M. bovis are present in lymph nodes (e.g. in NVLs of skin test reactor cattle) decontamination prior to culture may adversely affect viability, leading to false negative culture results. In contrast, IMS specifically captures whole M. bovis cells (live, dead or potentially dormant) which are not subject to any deleterious treatment before detection by PCR or MGIT culture. During this study only 2.7% of NVL lymph nodes tested culture positive, whereas 70.3% of the same samples tested M. bovis positive by the IMS-based tests. Results clearly demonstrate that not only are the IMS-based methods more rapid but they have greater detection sensitivity than the culture approach currently used for the detection of M. bovis infection in cattle. Adoption of the IMS-based methods for lymph node testing would have the potential to improve M. bovis detection in clinical samples.


Subject(s)
Immunomagnetic Separation/methods , Immunomagnetic Separation/veterinary , Mycobacterium bovis/isolation & purification , Tuberculosis, Bovine/diagnosis , Animals , Cattle , Culture Media , Lymph Nodes/microbiology , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Polymerase Chain Reaction , Sensitivity and Specificity , Tuberculosis, Bovine/microbiology
4.
J Clin Microbiol ; 50(5): 1598-605, 2012 May.
Article in English | MEDLINE | ID: mdl-22322353

ABSTRACT

This study describes the development and optimization of an immunomagnetic separation (IMS) method to isolate Mycobacterium bovis cells from lymph node tissues. Gamma-irradiated whole M. bovis AF2122/97 cells and ethanol-extracted surface antigens of such cells were used to produce M. bovis-specific polyclonal and monoclonal antibodies in rabbits and mice. They were also used to generate M. bovis-specific peptide ligands by phage display biopanning. The various antibodies and peptide ligands obtained were used to coat MyOne tosyl-activated Dynabeads (Life Technologies), singly or in combination, and evaluated for IMS. Initially, M. bovis capture from Middlebrook 7H9 broth suspensions (concentration range, 10 to 10(5) CFU/ml) was evaluated by IMS combined with an M. bovis-specific touchdown PCR. IMS-PCR results and, subsequently, IMS-culture results indicated that the beads with greatest immunocapture capability for M. bovis in broth were those coated simultaneously with a monoclonal antibody and a biotinylated 12-mer peptide. These dually coated beads exhibited minimal capture (mean of 0.36% recovery) of 12 other Mycobacterium spp. occasionally encountered in veterinary tuberculosis (TB) diagnostic laboratories. When the optimized IMS method was applied to various M. bovis-spiked lymph node matrices, it demonstrated excellent detection sensitivities (50% limits of detection of 3.16 and 57.7 CFU/ml of lymph node tissue homogenate for IMS-PCR and IMS-culture, respectively). The optimized IMS method therefore has the potential to improve isolation of M. bovis from lymph nodes and hence the diagnosis of bovine tuberculosis.


Subject(s)
Antibodies, Bacterial , Bacteriological Techniques/methods , Immunomagnetic Separation/methods , Mycobacterium bovis/isolation & purification , Peptides , Tuberculosis, Bovine/diagnosis , Animals , Antibodies, Monoclonal , Cattle , Lymph Nodes/microbiology , Mice , Peptide Library , Protein Binding , Rabbits , Sensitivity and Specificity , Tuberculosis, Bovine/microbiology
5.
Vet Med Int ; 2011: 981410, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21547237

ABSTRACT

There is significant interest in developing vaccines to control bovine tuberculosis, especially in wildlife species where this disease continues to persist in reservoir species such as the European Badger (Meles meles). However, gaining access to populations of badgers (protected under UK law) is problematic and not always possible. In this study, a new infection model has been developed in ferrets (Mustela furo), a species which is closely related to the badger. Groups of ferrets were infected using a Madison infection chamber and were examined postmortem for the presence of tuberculous lesions and to provide tissue samples for confirmation of Mycobacterium bovis by culture. An infectious dose was defined, that establishes infection within the lungs and associated lymph nodes with subsequent spread to the mesentery lymph nodes. This model, which emphasises respiratory tract infection, will be used to evaluate vaccines for the control of bovine tuberculosis in wildlife species.

SELECTION OF CITATIONS
SEARCH DETAIL
...