Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Geod ; 96(10): 67, 2022.
Article in English | MEDLINE | ID: mdl-36188100

ABSTRACT

Global geodetic VLBI is upgrading to its next-generation observing system, VGOS. This upgrade has turned out to be a process over multiple years, until VGOS reaches its full capabilities with the envisaged continuous observations. Until then, for the Australian stations, the upgrade means ceasing their legacy S/X observations, leaving a large gap in the global network as well as in the station time series. The Australian mixed-mode observing program is a series of sessions where the VGOS stations in Hobart and Katherine observe legacy S/X VLBI together with other stations in the region. This paper describes the technical details of these observations and their processing strategies and discusses their suitability for geodetic results by comparison with those of standard legacy S/X sessions. The presented mixed-mode sessions allow a continuation of the station time series, a benefit for the stations themselves as well as for future realisations of the terrestrial and celestial reference frames. A novel mode of observing is introduced and tested. The results are promising and it is suggested for acceptance into standard legacy S/X IVS observations, overcoming current gaps in the network due to VGOS upgrades and preventing a worsening of global results otherwise.

2.
Earth Planets Space ; 74(1): 118, 2022.
Article in English | MEDLINE | ID: mdl-35915663

ABSTRACT

The deviation of Universal Time from atomic time, expressed as UT1-UTC, reflects the irregularities of the Earth rotation speed and is key to precise geodetic applications which depend on the transformation between celestial and terrestrial reference frames. A rapidly varying quantity such as UT1-UTC demands observation scenarios enabling fast delivery of good results. These criteria are currently met only by the Very Long Baseline Interferometry (VLBI) Intensive sessions. Due to stringent requirements of a fast UT1-UTC turnaround, the observations are limited to a few baselines and a duration of one hour. Hence, the estimation of UT1-UTC from Intensives is liable to constraints and prone to errors introduced by inaccurate a priori information. One aspect in this context is that the regularly operated Intensive VLBI sessions organised by the International VLBI Service for Geodesy and Astrometry solely use stations in the northern hemisphere. Any potential systematic errors due to this northern hemisphere dominated geometry are so far unknown. Besides the general need for stimulating global geodetic measurements with southern observatories, this served as a powerful motivation to launch the SI (Southern Intensive) program in 2020. The SI sessions are observed using three VLBI antennas in the southern hemisphere: Ht (South Africa), Hb (Tasmania) and Yg (Western Australia). On the basis of UT1-UTC results from 53 sessions observed throughout 2020 and 2021, we demonstrate the competitiveness of the SI with routinely operated Intensive sessions in terms of operations and UT1-UTC accuracy. The UT1-UTC values of the SI reach an average agreement of 32 µs in terms of weighted standard deviation when compared with the conventional Intensives results of five independent analysis centers and of 27 µs compared with the 14C04 series. The mean scatter of all solutions of the considered northern hemisphere Intensives with respect to C04 is at a comparable level of 29 µs. The quality of the results is only slightly degraded if just the baseline HtHb is evaluated. In combination with the e-transfer capabilities from Ht to Hb, this facilitates continuation of the SI by ensuring rapid service UT1-UTC provision.

3.
Sensors (Basel) ; 18(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29772732

ABSTRACT

The possibility to observe satellites with the geodetic Very Long Baseline Interferometry (VLBI) technique is vividly discussed in the geodetic community, particularly with regard to future co-location satellite missions. The Chinese APOD-A nano satellite can be considered as a first prototype-suitable for practical observation tests-combining the techniques Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and VLBI on a single platform in a Low Earth Orbit (LEO). Unfortunately, it has hardly been observed by VLBI, so major studies towards actual frame ties could not be performed. The main reason for the lack of observations was that VLBI observations of satellites are non-standard, and suitable observing strategies were not in place for this mission. This work now presents the first serious attempt to observe the satellite with a VLBI network over multiple passes. We introduce a series of experiments with the AuScope geodetic VLBI array which were carried out in November 2016, and describe all steps integrated in the established process chain: the experiment design and observation planning, the antenna tracking and control scheme, correlation and derivation of baseline-delays, and the data analysis yielding delay residuals on the level of 10 ns. The developed procedure chain can now serve as reference for future experiments, hopefully enabling the global VLBI network to be prepared for the next co-location satellite mission.

SELECTION OF CITATIONS
SEARCH DETAIL
...