Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(17): 6402-6409, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699250

ABSTRACT

Singlet fission is an exciton multiplication process that allows for the conversion of one singlet exciton into two triplet excitons. Organic semiconductors, such as acenes and their soluble bis(triisopropylsilylethynyl) (TIPS) substituted counterparts, have played a major role in elucidating the understanding of the underlying mechanisms of singlet fission. Despite this, one prominent member of the acene family that has received little experimental attention to date is TIPS-anthracene, even with computational studies suggesting potential high singlet fission yields in the solid state. Here, time-resolved spectroscopic and magneto-photoluminescence measurements were performed on spin-cast films of TIPS-anthracene, showing evidence for singlet fission. A singlet fission yield of 19% (out of 200%) is estimated from transient absorption spectroscopy. Kinetic modeling of the magnetic field effect on photoluminescence suggests that fast rates of triplet dissociation lead to a low magnetic photoluminescence effect and that non-radiative decay of both the S1 and 1(TT) states is the cause for the low triplet yield.

2.
ACS Nano ; 18(22): 14176-14186, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768371

ABSTRACT

Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.

3.
Nat Rev Chem ; 8(2): 136-151, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273177

ABSTRACT

Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation-photoemission) or electrically (charge recombination-separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet-triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.

4.
J Am Chem Soc ; 145(40): 22058-22068, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37787467

ABSTRACT

The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.

5.
J Am Chem Soc ; 145(28): 15275-15283, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37417583

ABSTRACT

The quintet triplet-pair state may be generated upon singlet fission and is a critical intermediate that dictates the fate of excitons, which can be exploited for photovoltaics, information technologies, and biomedical imaging. In this report, we demonstrate that continuous-wave and pulsed electron spin resonance techniques such as phase-inverted echo-amplitude detected nutation (PEANUT), which have emerged as the primary tool for identifying the spin pathways in singlet fission, probe fundamentally different triplet-pair species. We directly observe that the generation rate of high-spin triplet pairs is dependent on the molecular orientation with respect to the static magnetic field. Moreover, we demonstrate that this observation can prevent incorrect analysis of continuous-wave electron spin resonance (cw-ESR) measurements and provide insight into the design of materials to target specific pathways that optimize exciton properties for specific applications.

6.
J Phys Chem Lett ; 14(20): 4742-4747, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37184362

ABSTRACT

Two strategies for improving solar energy efficiencies, triplet fusion and singlet fission, rely on the details of triplet-triplet interactions. In triplet fusion, there are several steps, each of which is a possible loss mechanism. In solution, the parameters describing triplet fusion collisions are difficult to inspect. Here we show that these parameters can be determined by examining the magnetic field dependence of triplet fusion upconversion. We show that there is a reduction of the magnetic field effect for perylene triplet fusion as the system moves from the quadratic to linear annihilation regimes with an increase in laser power. Our data are modeled with a small set of parameters that characterize the triplet fusion dynamics. These parameters are cross-validated with molecular dynamics simulations. This approach can be applied to both solution and solid state materials, providing a tool for screening potential annihilators for photon upconversion.

7.
Angew Chem Int Ed Engl ; 62(27): e202218174, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-36951117

ABSTRACT

Back-contact architectures offer a promising route to improve the record efficiencies of perovskite solar cells (PSCs) by eliminating parasitic light absorption. However, the performance of back-contact PSCs is limited by inadequate carrier diffusion in perovskite. Here, we report that perovskite films with a preferred out-of-plane orientation show improved carrier dynamic properties. With the addition of guanidine thiocyanate, the films exhibit carrier lifetimes and mobilities increased by 3-5 times, leading to diffusion lengths exceeding 7 µm. The enhanced carrier diffusion results from substantial suppression of nonradiative recombination and improves charge collection. Devices using such films achieve reproducible efficiencies reaching 11.2 %, among the best performances for back-contact PSCs. Our findings demonstrate the impact of carrier dynamics on back-contact PSCs and provide the basis for a new route to high-performance back-contact perovskite optoelectronic devices at low cost.

8.
Nat Commun ; 14(1): 1441, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922502

ABSTRACT

Quantum sensing and imaging of magnetic fields has attracted broad interests due to its potential for high sensitivity and spatial resolution. Common systems used for quantum sensing require either optical excitation (e.g., nitrogen-vacancy centres in diamond, atomic vapor magnetometers), or cryogenic temperatures (e.g., SQUIDs, superconducting qubits), which pose challenges for chip-scale integration and commercial scalability. Here, we demonstrate an integrated organic light emitting diode (OLED) based solid-state sensor for magnetic field imaging, which employs spatially resolved magnetic resonance to provide a robust mapping of magnetic fields. By considering the monolithic OLED as an array of individual virtual sensors, we achieve sub-micron magnetic field mapping with field sensitivity of ~160 µT Hz-1/2 µm-2. Our work demonstrates a chip-scale OLED-based laser free magnetic field sensor and an approach to magnetic field mapping built on a commercially relevant and manufacturable technology.

9.
Angew Chem Int Ed Engl ; 62(20): e202301678, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36914561

ABSTRACT

Polydopamine (PDA) is a synthetic model for melanin and has a wide range of opto-electronic properties that underpin its utility in applied and biological settings, from broadband light absorbance to possessing stable free radical species. Here, we show that PDA free radicals are photo-responsive under visible light irradiation, enabling PDA to serve as a photo-redox catalyst. Steady-state and transient electron spin resonance spectroscopy reveals a reversible amplification in semiquinone radical population within PDA under visible light. This photo-response modifies the redox potential of PDA and supports sensitisation of exogenous species via photoinduced electron transfer (PET). We demonstrate the utility of this discovery by employing PDA nanoparticles to photosensitise a common diaryliodonium photoinitiator and initiate free-radical polymerisation (FRP) of vinylic monomers. In situ 1 H nuclear magnetic resonance spectroscopy reveals an interplay between PDA-driven photosensitising and radical quenching during FRP under blue, green, and red light. This work provides crucial insights into the photoactive free radical properties of melanin-like materials and reveals a promising new application for polydopamine as a photosensitiser.

10.
J Am Chem Soc ; 144(15): 6992-7000, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35404602

ABSTRACT

Modifying surfaces using free radical polymerization (FRP) offers a means to incorporate the diverse physicochemical properties of vinyl polymers onto new materials. Here, we harness the universal surface attachment of polydopamine (PDA) to "prime" a range of different surfaces for free radical polymer attachment, including glass, cotton, paper, sponge, and stainless steel. We show that the intrinsic free radical species present in PDA can serve as an anchor point for subsequent attachment of propagating vinyl polymer macroradicals through radical-radical coupling. Leveraging a straightforward, twofold soak-wash protocol, FRP over the PDA-functionalized surfaces results in covalent polymer attachment on both porous and nonporous substrates, imparting new properties to the functionalized materials, including enhanced hydrophobicity, fluorescence, or temperature responsiveness. Our strategy is then extended to covalently incorporate PDA nanoparticles into organo-/hydrogels via radical cross-linking, yielding tunable PDA-polymer composite networks. The propensity of PDA free radicals to quench FRP is studied using in situ 1H nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, revealing a surface area-dependent macroradical scavenging mechanism that underpins PDA-polymer conjugation. By combining the arbitrary surface attachment of PDA with the broad physicochemical properties of vinyl polymers, our strategy provides a straightforward route for imparting unlimited new functionality to practically any surface.


Subject(s)
Indoles , Polymers , Free Radicals , Indoles/chemistry , Polymerization , Polymers/chemistry
11.
Adv Mater ; 34(7): e2104782, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34866252

ABSTRACT

Most of the reported 2D Ruddlesden-Popper (RP) lead halide perovskites with the general formula of An +1 Bn X3 n +1 (n = 1, 2, …) comprise layered perovskites separated by A-site-substituted organic spacers. To date, only a small number of X-site-substituted RP perovskites have been reported. Herein, the first inorganic-cation pseudohalide 2D phase perovskite single crystal, Cs2 Pb(SCN)2 Br2 , is reported. It is synthesized by the antisolvent vapor-assisted crystallization (AVC) method at room temperature. It exhibits a standard single-layer (n = 1) Ruddlesden-Popper structure described in space group of Pmmn (#59) and has a small separation (d = 1.69 Å) between the perovskite layers. The SCN- anions are found to bend the 2D Pb(SCN)2 Br2 framework slightly into a kite-shaped octahedron, limiting the formation of a quasi-2D perovskite structure (n > 1). This 2D single crystal exhibits a reversible first-order phase transformation to 3D CsPbBr3 (Pm3m #221) at 450 K. It has a low exciton binding energy of 160 meV-one of the lowest for 2D perovskites (n = 1). A Cs2 Pb(SCN)2 Br2 -single-crystal photodetector is demonstrated with respectable responsivity of 8.46 mA W-1 and detectivity of ≈1.2 × 1010 Jones at a low bias voltage of 0.5 V.

12.
Adv Mater ; 34(11): e2104186, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34919299

ABSTRACT

Devices that exploit the quantum properties of materials are widespread, with quantum information processors and quantum sensors showing significant progress. Organic materials offer interesting opportunities for quantum technologies owing to their engineerable spin properties, with spintronic operation and spin resonance magnetic-field sensing demonstrated in research grade devices, as well as proven compatibility with large-scale fabrication techniques. Yet several important challenges remain as moving toward scaling these proof-of-principle quantum devices to larger integrated logic systems or spatially smaller sensing elements, particularly those associated with the variation of quantum properties both within and between devices. Here, spatially resolved magnetoluminescence is used to provide the first 2D map of a hyperfine spin property-the Overhauser field-in traditional organic light-emitting diodes (OLEDs). Intra-device variabilities are found to exceed ≈30% while spatially correlated behavior is exhibited on lengths beyond 7 µm, similar in size to pixels in state-of-the-art active-matrix OLED arrays, which has implications for the reproducibility and integration of organic quantum devices.

13.
J Phys Chem A ; 125(33): 7226-7234, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34433272

ABSTRACT

Molecular chirality can be exploited as a sensitive reporter of the nature of intra- and interchromophore interactions in π-conjugated systems. In this report, we designed an intramolecular singlet fission (iSF)-based pentacene dimer with an axially chiral binaphthyl bridge (2,2'-(2,2'-dimethoxy-[1,1'-binaphthalene]-3,3'-diyl) n-octyl-di-isopropyl silylethynyl dipentacene, BNBP) to utilize its chiroptical response as a marker of iSF chromophore-bridge-chromophore (SFC-ß-SFC) interactions. The axial chirality of the bridge enforces significant one-handed excitonic coupling of the pentacene monomer units; as such, BNBP exhibits significant chiroptical response in the ground and excited states. We analyzed the chiroptical response of BNBP using the exciton coupling method and quadratic response density functional theory calculations to reveal that higher energy singlet transitions in BNBP involve significant delocalization of the electronic density on the bridging binaphthyl group. Our results highlight the promising application of chiroptical techniques to investigate the nature of SFC-ß-SFC interactions that impact singlet fission dynamics.

14.
J Mol Cell Cardiol ; 150: 44-53, 2021 01.
Article in English | MEDLINE | ID: mdl-33080242

ABSTRACT

Troponin is the Ca2+ molecular switch that regulates striated muscle contraction. In the heart, troponin Ca2+ sensitivity is also modulated by the PKA-dependent phosphorylation of a unique 31-residue N-terminal extension region of the Troponin I subunit (NH2-TnI). However, the detailed mechanism for the propagation of the phosphorylation signal through Tn, which results in the enhancement of the myocardial relaxation rate, is difficult to examine within whole Tn. Several models exist for how phosphorylation modulates the troponin response in cardiac cells but these are mostly built from peptide-NMR studies and molecular dynamics simulations. Here we used a paramagnetic spin labeling approach to position and track the movement of the NH2-TnI region within whole Tn. Through paramagnetic relaxation enhancement (PRE)-NMR experiments, we show that the NH2-TnI region interacts with a broad surface area on the N-domain of the Troponin C subunit. This region includes the Ca2+ regulatory Site II and the TnI switch-binding site. Phosphorylation of the NH2-TnI both weakens and shifts this region to an adjacent site on TnC. Interspin EPR distances between NH2-TnI and TnC further reveal a phosphorylation induced re-orientation of the TnC N-domain under saturating Ca2+ conditions. We propose an allosteric model where phosphorylation triggered cooperative changes in both the interaction of the NH2-TnI region with TnC, and the re-orientation of the TnC interdomain orientation, together promote the release of the TnI switch-peptide. Enhancement of the myocardial relaxation rate then occurs. Knowledge of this unique role of phosphorylation in whole Tn is important for understanding pathological processes affecting the heart.


Subject(s)
Myocardial Contraction/physiology , Myocardium/metabolism , Troponin I/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Nitrogen Isotopes , Phosphorylation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Rats , Spin Labels , Troponin I/chemistry
15.
J Chem Phys ; 151(16): 164104, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31675884

ABSTRACT

Several recent electron spin resonance studies have observed a quintet multiexciton state during the singlet fission process. Here, we provide a general theoretical explanation for the generation of this state by invoking a time-varying exchange coupling between pairs of triplet excitons and subsequently solving the relevant time-varying spin Hamiltonian for different rates at which the exchange coupling varies. We simulate experimental ESR spectra and draw qualitative conclusions about the adiabatic and diabatic transitions between triplet pair spin states.

16.
Nat Chem ; 11(9): 821-828, 2019 09.
Article in English | MEDLINE | ID: mdl-31406323

ABSTRACT

Singlet fission-that is, the generation of two triplets from a lone singlet state-has recently resurfaced as a promising process for the generation of multiexcitons in organic systems. Although advances in this area have led to the discovery of modular classes of chromophores, controlling the fate of the multiexciton states has been a major challenge; for example, promoting fast multiexciton generation while maintaining long triplet lifetimes. Unravelling the dynamical evolution of the spin- and energy conversion processes from the transition of singlet excitons to correlated triplet pairs and individual triplet excitons is necessary to design materials that are optimized for translational technologies. Here, we engineer molecules featuring a discrete energy gradient that promotes the migration of strongly coupled triplet pairs to a spatially separated, weakly coupled state that readily dissociates into free triplets. This 'energy cleft' concept allows us to combine the amplification and migration processes within a single molecule, with rapid dissociation of tightly bound triplet pairs into individual triplets that exhibit lifetimes of ~20 µs.

17.
Sci Rep ; 9(1): 5950, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976049

ABSTRACT

Surface-functionalized nanomaterials are of interest as theranostic agents that detect disease and track biological processes using hyperpolarized magnetic resonance imaging (MRI). Candidate materials are sparse however, requiring spinful nuclei with long spin-lattice relaxation (T1) and spin-dephasing times (T2), together with a reservoir of electrons to impart hyperpolarization. Here, we demonstrate the versatility of the nanodiamond material system for hyperpolarized 13C MRI, making use of its intrinsic paramagnetic defect centers, hours-long nuclear T1 times, and T2 times suitable for spatially resolving millimeter-scale structures. Combining these properties, we enable a new imaging modality, unique to nanoparticles, that exploits the phase-contrast between spins encoded with a hyperpolarization that is aligned, or anti-aligned with the external magnetic field. The use of phase-encoded hyperpolarization allows nanodiamonds to be tagged and distinguished in an MRI based on their spin-orientation alone, and could permit the action of specific bio-functionalized complexes to be directly compared and imaged.

18.
J Struct Biol ; 200(3): 376-387, 2017 12.
Article in English | MEDLINE | ID: mdl-28864299

ABSTRACT

The absence of a crystal structure of the calcium free state of the cardiac isoform of the troponin complex has hindered our understanding of how the simple binding of Ca2+ triggers conformational changes in troponin which are then propagated to enable muscle contraction. Here we have used continuous wave (CW) and Double Electron-Electron Resonance (DEER) pulsed EPR spectroscopy to measure distances between TnI and TnC to track the movement of the functionally important regulatory 'switch' region of cardiac Tn. Spin labels were placed on the switch region of Troponin I and distances measured to Troponin C. Under conditions of high Ca2+, the interspin distances for one set (TnI151/TnC84) were 'short' (9-10Å) with narrow distance distribution widths (3-8Å) indicating the close interaction of the switch region with the N-lobe of TnC. Additional spin populations representative of longer interspin distances were detected by DEER. These longer distance populations, which were ∼16-19Å longer than the short distance populations, possessed notably broader distance distribution widths (14-29Å). Upon Ca2+ removal, the interspin population shifted toward the longer distances, indicating the release of the switch region from TnC and an overall increase in disorder for this region. Together, our results suggest that under conditions of low Ca2+, the close proximity of the TnI switch region to TnC in the cardiac isoform is necessary for promoting the interaction between the regulatory switch helix with the N-lobe of cardiac Troponin C, which, unlike the skeletal isoform, is largely in a closed conformation.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Myocardium/metabolism , Troponin C/chemistry , Troponin I/chemistry , Troponin I/metabolism , Animals , Calcium/metabolism , Cysteine/genetics , Rats , Solubility , Spin Labels , Troponin C/genetics , Troponin C/metabolism
19.
J Am Chem Soc ; 139(36): 12488-12494, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28799752

ABSTRACT

We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.

20.
J Vis Exp ; (121)2017 03 06.
Article in English | MEDLINE | ID: mdl-28287568

ABSTRACT

A method for investigating recombination dynamics of photo-induced charge carriers in thin film semiconductors, specifically in photovoltaic materials such as organo-lead halide perovskites is presented. The perovskite film thickness and absorption coefficient are initially characterized by profilometry and UV-VIS absorption spectroscopy. Calibration of both laser power and cavity sensitivity is described in detail. A protocol for performing Flash-photolysis Time Resolved Microwave Conductivity (TRMC) experiments, a non-contact method of determining the conductivity of a material, is presented. A process for identifying the real and imaginary components of the complex conductivity by performing TRMC as a function of microwave frequency is given. Charge carrier dynamics are determined under different excitation regimes (including both power and wavelength). Techniques for distinguishing between direct and trap-mediated decay processes are presented and discussed. Results are modelled and interpreted with reference to a general kinetic model of photoinduced charge carriers in a semiconductor. The techniques described are applicable to a wide range of optoelectronic materials, including organic and inorganic photovoltaic materials, nanoparticles, and conducting/semiconducting thin films.


Subject(s)
Lasers , Microwaves , Nanoparticles/chemistry , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...