Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (152)2019 10 29.
Article in English | MEDLINE | ID: mdl-31736489

ABSTRACT

The blood brain barrier (BBB) is an important defense against the entrance of potentially toxic or pathogenic agents from the blood into the central nervous system (CNS). However, its existence also dramatically lowers the accessibility of systemically administered therapeutic agents to the CNS. One method to overcome this, is to inject those agents directly into the cerebrospinal fluid (CSF), thus bypassing the BBB. This can be done via implantation of a catheter for either continuous infusion using an osmotic pump, or for single bolus delivery. In this article, we describe a surgical protocol for delivery of CNS-targeting antisense oligonucleotides (ASOs) via a catheter implanted directly into the cauda equina space of the adult rat spine. As representative results, we show the efficacy of a single bolus ASO intrathecal (IT) injection via this catheterization system in knocking down the target RNA in different regions of the rat CNS. The procedure is safe, effective and does not require expensive equipment or surgical tools. The technique described here can be adapted to deliver drugs in other modalities as well.


Subject(s)
Blood-Brain Barrier/metabolism , Catheterization/methods , Central Nervous System/metabolism , Drug Delivery Systems/methods , Injections, Spinal/methods , Oligonucleotides, Antisense/administration & dosage , Animals , Biological Transport , Female , Male , Rats , Rats, Sprague-Dawley
2.
J Clin Invest ; 128(8): 3558-3567, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30010620

ABSTRACT

Mutations in superoxide dismutase 1 (SOD1) are responsible for 20% of familial ALS. Given the gain of toxic function in this dominantly inherited disease, lowering SOD1 mRNA and protein is predicted to provide therapeutic benefit. An early generation antisense oligonucleotide (ASO) targeting SOD1 was identified and tested in a phase I human clinical trial, based on modest protection in animal models of SOD1 ALS. Although the clinical trial provided encouraging safety data, the drug was not advanced because there was progress in designing other, more potent ASOs for CNS application. We have developed next-generation SOD1 ASOs that more potently reduce SOD1 mRNA and protein and extend survival by more than 50 days in SOD1G93A rats and by almost 40 days in SOD1G93A mice. We demonstrated that the initial loss of compound muscle action potential in SOD1G93A mice is reversed after a single dose of SOD1 ASO. Furthermore, increases in serum phospho-neurofilament heavy chain levels, a promising biomarker for ALS, are stopped by SOD1 ASO therapy. These results define a highly potent, new SOD1 ASO ready for human clinical trial and suggest that at least some components of muscle response can be reversed by therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Muscle, Skeletal/enzymology , Oligodeoxyribonucleotides, Antisense/pharmacology , Superoxide Dismutase-1/metabolism , Superoxide Dismutase/metabolism , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Humans , Muscle, Skeletal/pathology , Oligodeoxyribonucleotides, Antisense/genetics , Rats , Rats, Transgenic , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics
3.
Bioinformatics ; 27(20): 2775-81, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21846737

ABSTRACT

MOTIVATION: Off-target activity commonly exists in RNA interference (RNAi) screens and often generates false positives. Existing analytic methods for addressing the off-target effects are demonstrably inadequate in RNAi confirmatory screens. RESULTS: Here, we present an analytic method assessing the collective activity of multiple short interfering RNAs (siRNAs) targeting a gene. Using this method, we can not only reduce the impact of off-target activities, but also evaluate the specific effect of an siRNA, thus providing information about potential off-target effects. Using in-house RNAi screens, we demonstrate that our method obtains more reasonable and sensible results than current methods such as the redundant siRNA activity (RSA) method, the RNAi gene enrichment ranking (RIGER) method, the frequency approach and the t-test. CONTACT: xiaohua_zhang@merck.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Screening Assays , RNA Interference , Alzheimer Disease/genetics , Data Interpretation, Statistical , Diabetes Mellitus/genetics , Gene Knockdown Techniques , Genomics/methods , Herpesvirus 3, Human/genetics , Humans , RNA, Small Interfering
4.
J Biomol Screen ; 15(9): 1123-31, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20852024

ABSTRACT

In genome-scale RNA interference (RNAi) screens, it is critical to control false positives and false negatives statistically. Traditional statistical methods for controlling false discovery and false nondiscovery rates are inappropriate for hit selection in RNAi screens because the major goal in RNAi screens is to control both the proportion of short interfering RNAs (siRNAs) with a small effect among selected hits and the proportion of siRNAs with a large effect among declared nonhits. An effective method based on strictly standardized mean difference (SSMD) has been proposed for statistically controlling false discovery rate (FDR) and false nondiscovery rate (FNDR) appropriate for RNAi screens. In this article, the authors explore the utility of the SSMD-based method for hit selection in RNAi screens. As demonstrated in 2 genome-scale RNAi screens, the SSMD-based method addresses the unmet need of controlling for the proportion of siRNAs with a small effect among selected hits, as well as controlling for the proportion of siRNAs with a large effect among declared nonhits. Furthermore, the SSMD-based method results in reasonably low FDR and FNDR for selecting inhibition or activation hits. This method works effectively and should have a broad utility for hit selection in RNAi screens with replicates.


Subject(s)
Genome/genetics , Genomics/methods , RNA Interference , Cell Line, Tumor , Diabetes Mellitus/genetics , False Negative Reactions , False Positive Reactions , Humans , Nervous System Diseases/genetics , RNA, Small Interfering/metabolism , Reproducibility of Results
5.
J Neurosci ; 29(46): 14646-51, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19923297

ABSTRACT

Mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT) cause an adult-onset, hereditary sensory, and autonomic neuropathy type I (HSAN1). We previously reported that mice bearing a transgene-expressing mutant SPTLC1 (tgSPTLC1(C133W)) show a reduction in SPT activity and hyperpathia at 10 months of age. Now analyzed at a later age, we find these mice develop sensory loss with a distal small fiber neuropathy and peripheral myelinopathy. This phenotype is largely reversed when these mice are crossed with transgenic mice overexpressing wild-type SPTLC1 showing that the mutant SPTLC1 protein is not inherently toxic. Simple loss of SPT activity also cannot account for the HSAN1 phenotype, since heterozygous SPTLC1 knock-out mice have reduced SPT activity but are otherwise normal. Rather, the presence of two newly identified, potentially deleterious deoxysphingoid bases in the tgSPTLC1(C133W), but not in the wild-type, double-transgenic tgSPTLC1(WT + C133W) or SPTLC1(+/-) mice, suggests that the HSAN1 mutations alter amino acid selectivity of the SPT enzyme such that palmitate is condensed with alanine and glycine, in addition to serine. This observation is consistent with the hypothesis that HSAN1 is the result of a gain-of-function mutation in SPTLC1 that leads to accumulation of a toxic metabolite.


Subject(s)
Gene Expression , Hereditary Sensory and Autonomic Neuropathies/genetics , Phenotype , Protein Subunits/genetics , Serine C-Palmitoyltransferase/genetics , Sphingolipids/metabolism , Animals , Cricetinae , Hereditary Sensory and Autonomic Neuropathies/metabolism , Male , Mice , Mice, Inbred C3H , Mice, Knockout , Mice, Transgenic , Protein Subunits/biosynthesis , Protein Subunits/physiology , Serine C-Palmitoyltransferase/biosynthesis , Serine C-Palmitoyltransferase/physiology , Sphingolipids/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...