Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Stroke Cerebrovasc Dis ; 29(6): 104816, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32321651

ABSTRACT

BACKGROUND AND PURPOSE: Repetitive transcranial magnetic stimulation (rTMS) may promote recovery of motor function after stroke by inducing functional reorganization of cortical circuits. The objective of this study was to examine whether multifocal cortical stimulation using a new wearable transcranial rotating permanent magnet stimulator (TRPMS) can promote recovery of motor function after stroke by inducing functional reorganization of cortical circuits. METHODS: Thirty30 patients with chronic ischemic stroke and stable unilateral weakness were enrolled in a Phase 1/2a randomized double-blind sham-controlled clinical trial to evaluate safety and preliminary efficacy. Bilateral hemispheric stimulation was administered for 20 sessions 40 min each over 4 weeks. The primary efficacy endpoint was the change in functional MRI BOLD activation immediately after end of treatment. Secondary efficacy endpoints were clinical scales of motor function, including the Fugl-Meyer motor arm score, ARAT, grip strength, pinch strength, gait velocity, and NIHSS. RESULTS: TRPMS treatment was well-tolerated with no device-related adverse effects. Active treatment produced a significantly greater increase in the number of active voxels on fMRI than sham treatment (median +48.5 vs -30, p = 0.038). The median active voxel number after active treatment was 8.8-fold greater than after sham (227.5 vs 26, p = 0.016). Although the statistical power was inadequate to establish clinical endpoint benefits, numerical improvements were demonstrated in 5 of 6 clinical scales of motor function. The treatment effects persisted over a 3-month duration of follow-up. CONCLUSIONS: Multifocal bilateral TRPMS was safe and showed significant fMRI changes suggestive of functional reorganization of cortical circuits in patients with chronic ischemic stroke. A larger randomized clinical trial is warranted to verify recovery of motor function.


Subject(s)
Brain Ischemia/therapy , Motor Activity , Motor Cortex/physiopathology , Stroke/therapy , Transcranial Magnetic Stimulation , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Chronic Disease , Disability Evaluation , Female , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/diagnostic imaging , Recovery of Function , Stroke/diagnosis , Stroke/physiopathology , Texas , Time Factors , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/instrumentation , Treatment Outcome , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...