Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 494(7435): 86-9, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23389543

ABSTRACT

Long-term and persistent human disturbances have simultaneously altered the stability and diversity of ecological systems, with disturbances directly reducing functional attributes such as invasion resistance, while eliminating the buffering effects of high species diversity. Theory predicts that this combination of environmental change and diversity loss increases the risk of abrupt and potentially irreversible ecosystem collapse, but long-term empirical evidence from natural systems is lacking. Here we demonstrate this relationship in a degraded but species-rich pyrogenic grassland in which the combined effects of fire suppression, invasion and trophic collapse have created a species-poor grassland that is highly productive, resilient to yearly climatic fluctuations, and resistant to invasion, but vulnerable to rapid collapse after the re-introduction of fire. We initially show how human disturbance has created a negative relationship between diversity and function, contrary to theoretical predictions. Fire prevention since the mid-nineteenth century is associated with the loss of plant species but it has stabilized high-yield annual production and invasion resistance, comparable to a managed high-yield low-diversity agricultural system. In managing for fire suppression, however, a hidden vulnerability to sudden environmental change emerges that is explained by the elimination of the buffering effects of high species diversity. With the re-introduction of fire, grasslands only persist in areas with remnant concentrations of native species, in which a range of rare and mostly functionally redundant plants proliferate after burning and prevent extensive invasion including a rapid conversion towards woodland. This research shows how biodiversity can be crucial for ecosystem stability despite appearing functionally insignificant beforehand, a relationship probably applicable to many ecosystems given the globally prevalent combination of intensive long-term land management and species loss.


Subject(s)
Biodiversity , Ecosystem , Human Activities , Biomass , Climate Change , Ecology/methods , Fires , Introduced Species , Poaceae/growth & development , Population Dynamics , Trees/growth & development
2.
Ecol Lett ; 14(8): 733-40, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21627748

ABSTRACT

Here, we review consumer-resource (C-R) theory to show that the paradox of enrichment is a special case of a more general theoretical result. That is, we show that increased energy flux, relative to the consumer loss rate, makes C-R interactions top heavy (i.e., greater C:R biomass ratio) and less stable. We then review the literature on the attributes of aquatic and terrestrial ecosystems to argue that empirical estimates of parameters governing energy flux find that aquatic ecosystems have higher rates of relative energy flux than terrestrial ecosystems. Consistent with theory, we then review empirical work that shows aquatic ecosystems have greater herbivore:plant biomass ratios while we produce novel data to show that aquatic ecosystems have greater variability in population dynamics than their terrestrial counterparts. We end by arguing that theory, allometric relationships and a significant, negative correlation between body size and population variability suggest that these results may be driven by the smaller average body sizes of aquatic organisms relative to terrestrial organisms.


Subject(s)
Ecosystem , Energy Metabolism , Biomass , Body Size , Food Chain , Models, Biological , Population Dynamics
3.
Ecol Appl ; 16(3): 1238-48, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16827015

ABSTRACT

With the depletion of many natural resources, we are growing aware of the need to understand the risks that stem from different management decisions. Here, we outline an approach to test the ability of different dynamical signatures to characterize time-series data: how likely is it that a natural population is declining, sustainable, or increasing, and at what rates are these temporal changes likely occurring? These dynamical signatures can serve as a robust foundation on which to formulate alternative scenarios in a decision analysis. They take account of much of the uncertainty in model parameters and have precise mathematical underpinnings with associated risks. We present methods to evaluate the likelihood of these scenarios, and ways that the analysis can be graphically represented. We discuss different ecological factors such as climate variability, life history, ecosystem interactions, and a changing population age structure, all of which impact the dynamics of natural populations. Considering the types of dynamical signatures that emerge from these factors can change our understanding of risk and the decisions that we make.


Subject(s)
Risk Assessment , Decision Making, Organizational , Ecology
4.
Ecol Lett ; 8(5): 513-23, 2005 May.
Article in English | MEDLINE | ID: mdl-21352455

ABSTRACT

The dynamics of ecological systems include a bewildering number of biotic interactions that unfold over a vast range of spatial scales. Here, employing simple and general empirical arguments concerning the nature of movement, trophic position and behaviour we outline a general theory concerning the role of space and food web structure on food web stability. We argue that consumers link food webs in space and that this spatial structure combined with relatively rapid behavioural responses by consumers can strongly influence the dynamics of food webs. Employing simple spatially implicit food web models, we show that large mobile consumers are inordinately important in determining the stability, or lack of it, in ecosystems. More specifically, this theory suggests that mobile higher order organisms are potent stabilizers when embedded in a variable, and expansive spatial structure. However, when space is compressed and higher order consumers strongly couple local habitats then mobile consumers can have an inordinate destabilizing effect. Preliminary empirical arguments show consistency with this general theory.

5.
Nature ; 405(6783): 228-33, 2000 May 11.
Article in English | MEDLINE | ID: mdl-10821283

ABSTRACT

There exists little doubt that the Earth's biodiversity is declining. The Nature Conservancy, for example, has documented that one-third of the plant and animal species in the United States are now at risk of extinction. The problem is a monumental one, and forces us to consider in depth how we expect ecosystems, which ultimately are our life-support systems, to respond to reductions in diversity. This issue--commonly referred to as the diversity-stability debate--is the subject of this review, which synthesizes historical ideas with recent advances. Both theory and empirical evidence agree that we should expect declines in diversity to accelerate the simplification of ecological communities.


Subject(s)
Ecosystem , Animals , Food Chain , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...