Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Devices (Auckl) ; 9: 371-376, 2016.
Article in English | MEDLINE | ID: mdl-27789976

ABSTRACT

The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging.

2.
Eur Endocrinol ; 12(1): 18-23, 2016 Mar.
Article in English | MEDLINE | ID: mdl-29632582

ABSTRACT

Living with type 1 diabetes (T1D) presents many challenges in terms of daily living. Insulin users need to frequently monitor their blood glucose levels and take multiple injections per day and/or multiple boluses through an insulin infusion pump, with the consequences of failing to match the insulin dose to the body's needs resulting in hypoglycaemia and hyperglycaemia. The former can result in seizures, coma and even death; the latter can have both acute and long-term health implications. Many patients with T1D also fail to meet their treatment goals. In order to reduce the burdens of self-administering insulin, and improve efficacy and safety, there is a need to at least partially remove the patient from the loop via a closed-loop 'artificial pancreas' system. The Hypoglycaemia-Hyperglycaemia Minimizer (HHM) System, comprising a continuous, subcutaneous insulin infusion pump, continuous glucose monitor (CGM) and closed-loop insulin dosing algorithm, is able to predict changes in blood glucose and adjust insulin delivery accordingly to help keep the patient at normal glucose levels. Early clinical data indicate that this system is feasible, effective and safe, and has the potential to dramatically improve the therapeutic outcomes and quality of life for people with T1D.

3.
J Diabetes Sci Technol ; 10(1): 104-10, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26134834

ABSTRACT

BACKGROUND: The Predictive Hypoglycemia Minimizer System ("Hypo Minimizer"), consisting of a zone model predictive controller (the "controller") and a safety supervision module (the "safety module"), aims to mitigate hypoglycemia by preemptively modulating insulin delivery based on continuous glucose monitor (CGM) measurements. The "aggressiveness factor," a pivotal variable in the system, governs the speed and magnitude of the controller's insulin dosing characteristics in response to changes in CGM levels. METHODS: Twelve adults with type 1 diabetes were studied in closed-loop in a clinical research center for approximately 24 hours. This analysis focused primarily on the effect of the aggressiveness factor on the automated insulin-delivery characteristics of the controller, and secondarily on the glucose control results. RESULTS: As aggressiveness increased from "conservative" to "medium" to "aggressive," the controller recommended less insulin (-3.3% vs -14.4% vs -19.5% relative to basal) with a higher frequency (5.3% vs 14.4% vs 20.3%) during the critical times when the CGM was reading 90-120 mg/dl and decreasing. Blood glucose analyses indicated that the most aggressive setting resulted in the most desirable combination of the least time spent <70 mg/dl and the most time spent 70-180 mg/dl, particularly in the overnight period. Hyperglycemia, diabetic ketoacidosis, or severe hypoglycemia did not occur with any of the aggressiveness values. CONCLUSION: The Hypo Minimizer's controller took preemptive action to prevent hypoglycemia based on predicted changes in CGM glucose levels. The most aggressive setting was quickest to take action to reduce insulin delivery below basal and achieved the best glucose metrics.


Subject(s)
Algorithms , Blood Glucose/analysis , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Adult , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 1/blood , Feasibility Studies , Female , Humans , Hypoglycemia/blood , Hypoglycemia/prevention & control , Infusion Pumps, Implantable , Male , Middle Aged , Pancreas, Artificial
4.
J Diabetes Sci Technol ; 8(1): 35-42, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24876535

ABSTRACT

BACKGROUND: This feasibility study investigated the insulin-delivery characteristics of the Hypoglycemia-Hyperglycemia Minimizer (HHM) System-an automated insulin delivery device-in participants with type 1 diabetes. METHODS: Thirteen adults with type 1 diabetes were enrolled in this nonrandomized, uncontrolled, clinical-research-center-based feasibility study. The HHM System comprised a continuous subcutaneous insulin infusion pump, a continuous glucose monitor (CGM), and a model predictive control algorithm with a safety module, run on a laptop platform. Closed-loop control lasted approximately 20 hours, including an overnight period and two meals. RESULTS: When attempting to minimize glucose excursions outside of a prespecified target zone, the predictive HHM System decreased insulin infusion rates below the participants' preset basal rates in advance of below-zone excursions (CGM < 90 mg/dl), and delivered 80.4% less insulin than basal during those excursions. Similarly, the HHM System increased infusion rates above basal during above-zone excursions (CGM > 140 mg/dl), delivering 39.9% more insulin than basal during those excursions. Based on YSI, participants spent a mean ± standard deviation (SD) of 0.2 ± 0.5% of the closed-loop control time at glucose levels < 70 mg/dl, including 0.3 ± 0.9% for the overnight period. The mean ± SD glucose based on YSI for all participants was 164.5 ± 23.5 mg/dl. There were nine instances of algorithm-recommended supplemental carbohydrate administrations, and there was no severe hypoglycemia or diabetic ketoacidosis. CONCLUSIONS: Results of this study indicate that the current HHM System is a feasible foundation for development of a closed-loop insulin delivery device.

5.
J Diabetes Sci Technol ; 8(4): 685-90, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24876443

ABSTRACT

The Hypoglycemia-Hyperglycemia Minimizer (HHM) System aims to mitigate glucose excursions by preemptively modulating insulin delivery based on continuous glucose monitor (CGM) measurements. The "aggressiveness factor" is a key parameter in the HHM System algorithm, affecting how readily the system adjusts insulin infusion in response to changing CGM levels. Twenty adults with type 1 diabetes were studied in closed-loop in a clinical research center for approximately 26 hours. This analysis focused on the effect of the aggressiveness factor on the insulin dosing characteristics of the algorithm and, to a lesser extent, on the glucose control results observed. As the aggressiveness factor increased from conservative to medium to aggressive: the maximum observed insulin dose delivered by the algorithm­which is designed to give doses that are corrective in nature every 5 minutes­increased (1.00 vs 1.15 vs 2.20 U, respectively); tendency to adhere to the subject's nominal basal dose decreased (61.9% vs 56.6% vs 53.4%); and readiness to decrease insulin below basal also increased (18.4% vs 19.4% vs 25.2%). Glucose analyses by both CGM and Yellow Springs Instruments (YSI) indicated that the aggressive setting of the algorithm resulted in the least time spent at levels >180 mg/dL, and the most time spent between 70-180 mg/dL. There was no severe hyperglycemia, diabetic ketoacidosis, or severe hypoglycemia for any of the aggressiveness values investigated. These analyses underscore the importance of investigating the sensitivity of the HHM System to its key parameters, such as the aggressiveness factor, to guide future development decisions.


Subject(s)
Algorithms , Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Hyperglycemia/blood , Hypoglycemia/blood , Insulin Infusion Systems/statistics & numerical data , Adult , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/therapy , Feasibility Studies , Female , Glycated Hemoglobin/analysis , Humans , Hyperglycemia/therapy , Hypoglycemia/therapy , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Insulin/administration & dosage , Insulin/blood , Insulin Infusion Systems/adverse effects , Male , Patient Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...