Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
Schizophr Bull ; 47(5): 1421-1430, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33954497

ABSTRACT

OBJECTIVE: The cerebellum serves a wide range of functions and is suggested to be composed of discrete regions dedicated to unique functions. We recently developed a new parcellation of the dentate nuclei (DN), the major output nuclei of the cerebellum, which optimally divides the structure into 3 functional territories that contribute uniquely to default-mode, motor-salience, and visual processing networks as indexed by resting-state functional connectivity (RsFc). Here we test for the first time whether RsFc differences in the DN, precede the onset of psychosis in individuals at risk of developing schizophrenia. METHODS: We used the magnetic resonance imaging (MRI) dataset from the Shanghai At Risk for Psychosis study that included subjects at high risk to develop schizophrenia (N = 144), with longitudinal follow-up to determine which subjects developed a psychotic episode within 1 year of their functional magnetic resonance imaging (fMRI) scan (converters N = 23). Analysis used the 3 functional parcels (default-mode, salience-motor, and visual territory) from the DN as seed regions of interest for whole-brain RsFc analysis. RESULTS: RsFc analysis revealed abnormalities at baseline in high-risk individuals who developed psychosis, compared to high-risk individuals who did not develop psychosis. The nature of the observed abnormalities was found to be anatomically specific such that abnormal RsFc was localized predominantly in cerebral cortical networks that matched the 3 functional territories of the DN that were evaluated. CONCLUSIONS: We show for the first time that abnormal RsFc of the DN may precede the onset of psychosis. This new evidence highlights the role of the cerebellum as a potential target for psychosis prediction and prevention.


Subject(s)
Cerebellar Nuclei/physiopathology , Connectome , Default Mode Network/physiopathology , Disease Progression , Nerve Net/physiopathology , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Adolescent , Adult , Cerebellar Nuclei/diagnostic imaging , Default Mode Network/diagnostic imaging , Disease Susceptibility , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Risk , Schizophrenia/diagnostic imaging , Young Adult
2.
Schizophr Bull ; 47(2): 562-574, 2021 03 16.
Article in English | MEDLINE | ID: mdl-32926141

ABSTRACT

OBJECTIVE: To assess cortical thickness (CT) and surface area (SA) of frontal, temporal, and parietal brain regions in a large clinical high risk for psychosis (CHR) sample, and to identify cortical brain abnormalities in CHR who convert to psychosis and in the whole CHR sample, compared with the healthy controls (HC). METHODS: Magnetic resonance imaging, clinical, and cognitive data were acquired at baseline in 92 HC, 130 non-converters, and 22 converters (conversion assessed at 1-year follow-up). CT and SA at baseline were calculated for frontal, temporal, and parietal subregions. Correlations between regions showing group differences and clinical scores and age were also obtained. RESULTS: CT but not SA was significantly reduced in CHR compared with HC. Two patterns of findings emerged: (1) In converters, CT was significantly reduced relative to non-converters and controls in the banks of superior temporal sulcus, Heschl's gyrus, and pars triangularis and (2) CT in the inferior parietal and supramarginal gyrus, and at trend level in the pars opercularis, fusiform, and middle temporal gyri was significantly reduced in all high-risk individuals compared with HC. Additionally, reduced CT correlated significantly with older age in HC and in non-converters but not in converters. CONCLUSIONS: These results show for the first time that fronto-temporo-parietal abnormalities characterized all CHR, that is, both converters and non-converters, relative to HC, while CT abnormalities in converters relative to CHR-NC and HC were found in core auditory and language processing regions.


Subject(s)
Affective Disorders, Psychotic/pathology , Cerebral Cortex/pathology , Disease Progression , Language , Nerve Net/pathology , Psychotic Disorders/pathology , Schizophrenia/pathology , Adolescent , Adult , Affective Disorders, Psychotic/diagnostic imaging , Affective Disorders, Psychotic/physiopathology , Cerebral Cortex/diagnostic imaging , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/physiopathology , Risk , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Young Adult
3.
Curr Biol ; 30(12): 2379-2385.e4, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32413301

ABSTRACT

The ability to rapidly arouse from sleep is important for survival. However, increased arousals in patients with sleep apnea and other disorders prevent restful sleep and contribute to cognitive, metabolic, and physiologic dysfunction [1, 2]. Little is currently known about which neural systems mediate these brief arousals, hindering the development of treatments that restore normal sleep. The basal forebrain (BF) receives inputs from many nuclei of the ascending arousal system, including the brainstem parabrachial neurons, which promote arousal in response to elevated blood carbon dioxide levels, as seen in sleep apnea [3]. Optical inhibition of the terminals of parabrachial neurons in the BF impairs cortical arousals to hypercarbia [4], but which BF cell types mediate cortical arousals in response to hypercarbia or other sensory stimuli is unknown. Here, we tested the role of BF parvalbumin (PV) neurons in arousal using optogenetic techniques in mice. Optical stimulation of BF-PV neurons produced rapid transitions to wakefulness from non-rapid eye movement (NREM) sleep but did not affect REM-wakefulness transitions. Unlike previous studies of BF glutamatergic and cholinergic neurons, arousals induced by stimulation of BF-PV neurons were brief and only slightly increased total wake time, reminiscent of clinical findings in sleep apnea [5, 6]. Bilateral optical inhibition of BF-PV neurons increased the latency to arousal produced by exposure to hypercarbia or auditory stimuli. Thus, BF-PV neurons are an important component of the brain circuitry that generates brief arousals from sleep in response to stimuli, which may indicate physiological dysfunction or danger to the organism.


Subject(s)
Acoustic Stimulation , Arousal/physiology , Carbohydrates/administration & dosage , Neurons/physiology , Animal Feed/analysis , Animals , Basal Forebrain/physiology , Diet , Mice , Parvalbumins/metabolism , Sleep/physiology , Wakefulness/physiology
4.
Clin EEG Neurosci ; 51(4): 244-251, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32204613

ABSTRACT

We investigated whether the gray matter volume of primary auditory cortex (Heschl's gyrus [HG]) was associated with abnormal patterns of auditory γ activity in schizophrenia, namely impaired γ synchronization in the 40-Hz auditory steady-state response (ASSR) and increased spontaneous broadband γ power. (The γ data were previously reported in Hirano et al, JAMA Psychiatry, 2015;72:813-821). Participants were 24 healthy controls (HC) and 23 individuals with chronic schizophrenia (SZ). The ASSR was obtained from the electroencephalogram to click train stimulation at 20, 30, and 40 Hz rates. Dipole source localization of the ASSR was used to provide a spatial filter of auditory cortex activity, from which ASSR evoked power and phase locking factor (PLF), and induced γ power were computed. HG gray matter volume was derived from structural magnetic resonance imaging at 3 T with manually traced regions of interest. As expected, HG gray matter volume was reduced in SZ compared with HC. In SZ, left hemisphere ASSR PLF and induced γ power during the 40-Hz stimulation condition were positively and negatively correlated with left HG gray matter volume, respectively. These results provide evidence that cortical gray matter structure, possibly resulting from reduced synaptic connectivity at the microcircuit level, is related to impaired γ synchronization and increased spontaneous γ activity in schizophrenia.


Subject(s)
Auditory Cortex , Schizophrenia , Acoustic Stimulation , Electroencephalography , Evoked Potentials, Auditory , Humans
5.
Schizophr Bull ; 46(4): 990-998, 2020 07 08.
Article in English | MEDLINE | ID: mdl-31990358

ABSTRACT

We investigated brain wiring in chronic schizophrenia and healthy controls in frontostriatal circuits using diffusion magnetic resonance imaging tractography in a novel way. We extracted diffusion streamlines in 27 chronic schizophrenia and 26 healthy controls connecting 4 frontal subregions to the striatum. We labeled the projection zone striatal surface voxels into 2 subtypes: dominant-input from a single cortical subregion, and, functionally integrative, with mixed-input from diverse cortical subregions. We showed: 1) a group difference for total striatal surface voxel number (P = .045) driven by fewer mixed-input voxels in the left (P  = .007), but not right, hemisphere; 2) a group by hemisphere interaction for the ratio quotient between voxel subtypes (P  = .04) with a left (P  = .006), but not right, hemisphere increase in schizophrenia, also reflecting fewer mixed-input voxels; and 3) fewer mixed-input voxel counts in schizophrenia (P  = .045) driven by differences in left hemisphere limbic (P  = .007) and associative (P  = .01), but not sensorimotor, striatum. These results demonstrate a less integrative pattern of frontostriatal structural connectivity in chronic schizophrenia. A diminished integrative pattern yields a less complex input pattern to the striatum from the cortex with less circuit integration at the level of the striatum. Further, as brain wiring occurs during early development, aberrant brain wiring could serve as a developmental biomarker for schizophrenia.


Subject(s)
Corpus Striatum/pathology , Nerve Net/pathology , Prefrontal Cortex/pathology , Schizophrenia/pathology , Adult , Corpus Striatum/diagnostic imaging , Diffusion Tensor Imaging , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Schizophrenia/diagnostic imaging
6.
Clin EEG Neurosci ; 51(4): 215-221, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31896289

ABSTRACT

Existing evidence suggests that patients with schizophrenia may have a deficit in processing facial expressions. However, the neural basis of this processing deficit remains unclear. A total of 20 men diagnosed with chronic schizophrenia and 13 age- and sex-matched controls participated in the study. We investigated visual N170 and P3a components evoked in response to fearful, happy, and sad faces during an emotion discrimination task. Compared with control subjects, patients showed significantly smaller N170 amplitudes bilaterally (P = .04). We found no significant main effect of emotion of the presented faces (fearful, happy, or sad) on N170 amplitude. Patients showed significantly smaller P3a amplitudes in response to fearful (P = .01) and happy (P = .02) faces, but no significant between-group differences were observed for sad faces (P = .22). Moreover, we found no significant P3a modulation effect in response to emotional faces in patients with schizophrenia. Our results suggest that altered P3a modulations to emotional faces may be associated with emotion recognition deficits in patients with schizophrenia.


Subject(s)
Schizophrenia , Electroencephalography , Emotions , Evoked Potentials , Facial Expression , Humans , Male , Photic Stimulation
7.
Schizophr Res ; 226: 74-83, 2020 12.
Article in English | MEDLINE | ID: mdl-30819593

ABSTRACT

Auditory P300 oddball and novel components index working memory operations and salience processing, respectively, and are regarded as biomarkers of neurocognitive changes in both chronic and first-episode schizophrenia. Much less is known about whether P300 abnormalities exist in individuals at clinical high risk for psychosis (CHR) and if they are predictors of both transition to psychosis and remission from symptoms. One hundred and four CHR and 69 healthy control individuals (HC) completed P300 oddball paradigm, and 131 CHR and 69 HC subjects completed P300 novel paradigm. All CHR subjects were followed up for one year and stratified into CHR converters (CHRC) and non-converters (CHR-NC), with CHR-NC further stratified into remitted and non-remitted subgroups. Between-group comparisons of P300 oddball and novel amplitude and latency were performed among CHRC, CHR-NC and HC, as well as among CHRC, non-remitted CHR, remitted CHR and HC. CHR converters had lower fronto-central P300 novel amplitude as well as marginally lower P300 oddball amplitude relative to HC. When CHR non-converters were stratified into remitted and non-remitted subgroups, P300 novel amplitude in remitted CHR subjects was comparable to HC, and it was higher than that in CHR subjects who converted to psychosis or who did not remit. Thus, reduced P300 novel amplitude indexing impaired salience processing marked both conversion to psychosis and remission from psychotic symptoms.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans
8.
Clin EEG Neurosci ; 51(4): 198-206, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31390901

ABSTRACT

The N1, P2, and P3 event-related potentials (ERPs) are impaired in first-episode schizophrenia (FESz). Reduced pitch-deviant mismatch negativity (MMN) is present in chronic schizophrenia but not FESz. We examined effect sizes of, and correlations between, N1, P2, P3, and MMN in 106 FESz and 114 matched psychiatrically well controls to determine which ERPs maximally differentiated groups, and whether late sensory/perceptual deficits (N1, P2) affected preattentive memory (MMN) and conscious attention (P3). Furthermore, we compared hallucinators and nonhallucinators within FESz. Participants completed 1 of 3 oddball tasks, silently counting target tones among standard tones. Sixty-seven FESz and 72 matched participants also completed pitch-deviant MMN testing. Measures were z-scored from task appropriate controls before merging samples. Mean z-scores for N1, P2, and P3 were significantly abnormal in FESz, while pitch-deviant MMN was not. N1 showed the largest deficit (z = 0.53), and only N1 was smaller in hallucinators (n = 71) than nonhallucinators (n = 27). Among all participants, early sensory processing (N1, P2) correlated with later cognitive processing (P3), and P2 and P3 also correlated with automatic preattentive memory (pitch-deviant MMN). In well individuals, N1 was associated with MMN. These data are consistent with bottom-up sensory/perceptual processes affecting more cognitive processes. However, N1 and MMN were not associated in FESz, suggesting different auditory cortex physiology underlie these ERPs, which is differentially affected in FESz. Larger P2 and P3 with greater estimated premorbid intellect in patients indicate a possible neuroprotective effect of intellect in FESz.


Subject(s)
Schizophrenia , Acoustic Stimulation , Electroencephalography , Evoked Potentials , Evoked Potentials, Auditory , Hospitalization , Humans
9.
Mol Psychiatry ; 25(10): 2431-2440, 2020 10.
Article in English | MEDLINE | ID: mdl-30410064

ABSTRACT

The emergence of prodromal symptoms of schizophrenia and their evolution into overt psychosis may stem from an aberrant functional reorganization of the brain during adolescence. To examine whether abnormalities in connectome organization precede psychosis onset, we performed a functional connectome analysis in a large cohort of medication-naive youth at risk for psychosis from the Shanghai At Risk for Psychosis (SHARP) study. The SHARP program is a longitudinal study of adolescents and young adults at Clinical High Risk (CHR) for psychosis, conducted at the Shanghai Mental Health Center in collaboration with neuroimaging laboratories at Harvard and MIT. Our study involved a total of 251 subjects, including 158 CHRs and 93 age-, sex-, and education-matched healthy controls. During 1-year follow-up, 23 CHRs developed psychosis. CHRs who would go on to develop psychosis were found to show abnormal modular connectome organization at baseline, while CHR non-converters did not. In all CHRs, abnormal modular connectome organization at baseline was associated with a threefold conversion rate. A region-specific analysis showed that brain regions implicated in early-course schizophrenia, including superior temporal gyrus and anterior cingulate cortex, were most abnormal in terms of modular assignment. Our results show that functional changes in brain network organization precede the onset of psychosis and may drive psychosis development in at-risk youth.


Subject(s)
Connectome , Psychotic Disorders/diagnosis , Adolescent , Adult , Child , China , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Prodromal Symptoms , Prognosis , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Psychotic Disorders/physiopathology , Schizophrenia/pathology , Schizophrenia/physiopathology , Young Adult
10.
Clin EEG Neurosci ; 51(4): 207-214, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31826666

ABSTRACT

Background. Abnormalities of mismatch negativity (MMN), an event-related potential, indexing preattentive mechanisms, are consistently reported in schizophrenia (SZ). MMN abnormalities elicited to different deviant types have been recently shown to distinguish among patients according to length of their illness as well as inpatient versus outpatient status, and to be modulated by premorbid IQ. The objective of this study was to evaluate the MMN elicited by both frequency and duration deviant stimuli in patients with early schizophrenia (EP) recruited from an outpatient clinic in Boston, Massachusetts. Methods. Twenty-two healthy controls (HC) and 22 age-, handedness-, and gender-matched EP were tested using a frequency and duration MMN paradigm. Clinical data were also collected. Results. Frequency MMN amplitude but not duration MMN was significantly reduced in EP relative to HC subjects (P = .015). Conclusions. These results indicate that in this sample of early psychosis outpatient group, reductions in frequency MMN but not in duration MMN index clinical status. The relationship between age at first hospitalization and MMN frequency and duration amplitude and latency indicates that neurodevelopmental stage, auditory function, and clinical status are tightly linked.


Subject(s)
Evoked Potentials, Auditory , Psychotic Disorders , Acoustic Stimulation , Electroencephalography , Humans , Outpatients
11.
Schizophr Res ; 215: 385-391, 2020 01.
Article in English | MEDLINE | ID: mdl-31477373

ABSTRACT

BACKGROUND: The cingulum bundle (CB) is a major white matter fiber tract of the limbic system that underlies cingulate cortex, passing longitudinally over the corpus callosum. The connectivity of this white matter fiber tract plays a major role in emotional expression, attention, motivation, and working memory, all of which are affected in schizophrenia. Myelin related CB abnormalities have also been implicated in schizophrenia. The purpose of this study is to determine whether or not CB abnormalities are evident in individuals at clinical high risk (CHR) for psychosis, and whether or not cognitive deficits in the domains subserved by CB are related to its structural abnormalities. METHODS: Diffusion Tensor Imaging (DTI) was performed on a 3 T magnet. DT tractography was used to evaluate CB in 20 individuals meeting CHR criteria (13 males/7 females) and 23 healthy controls (12 males/11 females) group matched on age, gender, parental socioeconomic status, education, and handedness. Fractional anisotropy (FA), a measure of white matter coherence and integrity, radial diffusivity (RD), thought to reflect myelin integrity, trace, a possible marker of atrophy, and axial diffusivity (AD), thought to reflect axonal integrity, were averaged over the entire tract and used to investigate CB abnormalities in individuals at CHR for psychosis compared with healthy controls. RESULTS: Significant group differences were found between individuals at CHR for psychosis and controls for FA (p = 0.028), RD (p = 0.03) and trace (p = 0.031), but not for AD (p = 0.09). We did not find any significant correlations between DTI measures and clinical symptoms. CONCLUSION: These findings suggest abnormalities (possibly myelin related) in the CB in individuals at CHR for psychosis.


Subject(s)
Cognitive Dysfunction/pathology , Limbic System/pathology , Myelin Sheath/pathology , Psychotic Disorders/pathology , Schizophrenia/pathology , White Matter/pathology , Adolescent , Adult , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Diffusion Tensor Imaging , Female , Humans , Limbic System/diagnostic imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/physiopathology , Risk , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , White Matter/diagnostic imaging , Young Adult
12.
Clin EEG Neurosci ; 51(4): 267-274, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31608658

ABSTRACT

We hypothesized that neuropsychological disturbance in schizophrenia (SZ) may reflect faulty interactions of executive attention and episodic memory, emanating, in part, from reduced prefrontal cortex (PFC) gray matter volume. Participants with SZ (n = 84) and age-matched (n = 77) controls completed both the Wisconsin Card Sorting Test (WCST) and the Wechsler Memory Scale-Third Edition (WMS-III), used, respectively, as measures of executive attention and episodic memory. A subset of SZ (n = 27) and control (n = 17) groups also had available 3-T magnetic resonance imaging (MRI) studies of the PFC. For SZ, but not control groups, neuropsychological results indicated that executive attention interacted significantly with episodic memory, with failures of executive attention, as reflected by increased WCST perseverative errors, directly linked to poor performance on the WMS-III measure of delayed visual recall of action scenes. MRI results indicated reduced left PFC gray matter volume for SZ group, which in turn correlated significantly with their deficits in visual memory but not in executive attention. Results showed that 61% of the variance in neuropsychological performance in the SZ group was attributed to gray matter volume of left inferior prefrontal gyrus gray matter volume. PFC-mediated failure of executive attention-episodic memory interactions may represent an important mechanism in neuropsychological disturbance in SZ.


Subject(s)
Gray Matter , Schizophrenia , Attention , Electroencephalography , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuropsychological Tests , Schizophrenia/diagnostic imaging
13.
Neuroimage Clin ; 26: 102108, 2020.
Article in English | MEDLINE | ID: mdl-31791912

ABSTRACT

The first episode of psychosis is typically preceded by a prodromal phase with subthreshold symptoms and functional decline. Improved outcome prediction in this stage is needed to allow targeted early intervention. This study assesses a combined clinical and resting-state fMRI prediction model in 137 adolescents and young adults at Clinical High Risk (CHR) for psychosis from the Shanghai At Risk for Psychosis (SHARP) program. Based on outcome at one-year follow-up, participants were separated into three outcome categories including good outcome (symptom remission, N = 71), intermediate outcome (ongoing CHR symptoms, N = 30), and poor outcome (conversion to psychosis or treatment-refractory, N = 36). Validated clinical predictors from the psychosis-risk calculator were combined with measures of resting-state functional connectivity. Using multinomial logistic regression analysis and leave-one-out cross-validation, a clinical-only prediction model did not achieve a significant level of outcome prediction (F1 = 0.32, p = .154). An imaging-only model yielded a significant prediction model (F1 = 0.41, p = .016), but a combined model including both clinical and connectivity measures showed the best performance (F1 = 0.46, p < .001). Influential predictors in this model included functional decline, verbal learning performance, a family history of psychosis, default-mode and frontoparietal within-network connectivity, and between-network connectivity among language, salience, dorsal attention, sensorimotor, and cerebellar networks. These findings suggest that brain changes reflected by alterations in functional connectivity may be useful for outcome prediction in the prodromal stage.


Subject(s)
Brain/physiopathology , Disease Progression , Nerve Net/physiopathology , Psychotic Disorders/physiopathology , Adolescent , Adult , Brain/diagnostic imaging , Connectome , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Models, Theoretical , Nerve Net/diagnostic imaging , Prognosis , Psychotic Disorders/diagnostic imaging , Risk , Young Adult
14.
Am J Psychiatry ; 176(10): 820-828, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31230461

ABSTRACT

OBJECTIVE: Detecting brain abnormalities in clinical high-risk populations before the onset of psychosis is important for tracking pathological pathways and for identifying possible intervention strategies that may impede or prevent the onset of psychotic disorders. Co-occurring cellular and extracellular white matter alterations have previously been implicated after a first psychotic episode. The authors investigated whether or not cellular and extracellular alterations are already present in a predominantly medication-naive cohort of clinical high-risk individuals experiencing attenuated psychotic symptoms. METHODS: Fifty individuals at clinical high risk, of whom 40 were never medicated, were compared with 50 healthy control subjects, group-matched for age, gender, and parental socioeconomic status. 3-T multishell diffusion MRI data were obtained to estimate free-water imaging white matter measures, including fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). RESULTS: Significantly lower FAT was observed in the clinical high-risk group compared with the healthy control group, but no statistically significant FW alterations were observed between groups. Lower FAT in the clinical high-risk group was significantly associated with a decline in Global Assessment of Functioning Scale (GAF) score compared with highest GAF score in the previous 12 months. CONCLUSIONS: Cellular but not extracellular alterations characterized the clinical high-risk group, especially in those who experienced a decline in functioning. These cellular changes suggest an early deficit that possibly reflects a predisposition to develop attenuated psychotic symptoms. In contrast, extracellular alterations were not observed in this clinical high-risk sample, suggesting that previously reported extracellular abnormalities may reflect an acute response to psychosis, which plays a more prominent role closer to or at onset of psychosis.


Subject(s)
Brain/diagnostic imaging , Psychotic Disorders/diagnostic imaging , White Matter/diagnostic imaging , Brain/pathology , Case-Control Studies , Diffusion Magnetic Resonance Imaging , Extracellular Space/metabolism , Female , Humans , Male , Neuroimaging , Psychotic Disorders/pathology , Risk Factors , Water , White Matter/pathology , Young Adult
15.
Int J Psychophysiol ; 145: 57-64, 2019 11.
Article in English | MEDLINE | ID: mdl-31173768

ABSTRACT

BACKGROUND: Face processing is impaired in long-term schizophrenia as indexed by a reduced face-related N170 event-related potential (ERP) that corresponds with volumetric decreases in right fusiform gyrus. Impairment in face processing may constitute an object-specific deficit in schizophrenia that relates to social impairment and misattribution of social signs in the disease, or the face deficit may be part of a more general deficit in complex visual processing. Further, it is not clear the degree to which face and complex object processing deficits are present early in disease course. To that end, the current study investigated face- and object-elicited N170 in long-term schizophrenia and the first hospitalized schizophrenia-spectrum. METHODS: ERPs were collected from 32 long-term schizophrenia patients and 32 matched controls, and from 31 first hospitalization patients and 31 matched controls. Subjects detected rarely presented butterflies among non-target neutral faces and automobiles. RESULTS: For both patient groups, the N170s to all stimuli were significantly attenuated. Despite this overall reduction, the increase in N170 amplitude to faces was intact in both patient samples. Symptoms were not correlated with N170 amplitude or latency to faces. CONCLUSIONS: Information processing of complex stimuli is fundamentally impaired in schizophrenia, as reflected in attenuated N170 ERPs in both first hospitalized and long-term patients. This suggests the presence of low-level visual complex object processing deficits near disease onset that persist with disease course.


Subject(s)
Brain/physiopathology , Evoked Potentials/physiology , Facial Recognition/physiology , Schizophrenia/physiopathology , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Pattern Recognition, Visual/physiology , Photic Stimulation
16.
Schizophr Res ; 208: 145-152, 2019 06.
Article in English | MEDLINE | ID: mdl-31005464

ABSTRACT

The early auditory-evoked gamma band response (EAGBR) may serve as an index of the integrity of fast recurrent inhibition or synaptic connectivity in the auditory cortex, where abnormalities in individuals with schizophrenia have been consistently found. The EAGBR has been rarely investigated in first episode schizophrenia patients (FESZ) and individuals at clinical high risk (CHR) for schizophrenia, and never been compared directly between these populations nor evaluated longitudinally. Here we examined the EAGBR in FESZ, CHR, and matched healthy controls (HC) at baseline and 1-year follow-up assessments to determine whether the EAGBR was affected in these clinical groups, and whether any EAGBR abnormalities changed over time. The electroencephalogram was recorded with a dense electrode array while subjects (18 FESZ, 18 CHR, and 40 HC) performed an auditory oddball task. Event-related spectral measures (phase locking factor [PLF] and evoked power) were computed on Morlet-wavelet-transformed single epochs from the standard trials. At baseline, EAGBR PLF and evoked power did not differ between groups. FESZ showed progressive reductions of PLF and evoked power from baseline to follow-up, and deficits in PLF at follow-up compared to HC. EAGBR peak frequency also increased at temporal sites in FESZ from baseline to follow-up. Longitudinal effects on the EAGBR were not found in CHR or HC, nor did these groups differ at follow-up. In conclusion, we detected neurophysiological changes of auditory cortex function in FESZ during a one-year period, which were not observed in CHR. These findings are discussed within the context of neurodevelopmental models of schizophrenia.


Subject(s)
Brain/physiopathology , Evoked Potentials, Auditory , Gamma Rhythm , Schizophrenia/physiopathology , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Prodromal Symptoms , Risk , Signal Processing, Computer-Assisted , Young Adult
17.
Schizophr Bull ; 45(2): 386-395, 2019 03 07.
Article in English | MEDLINE | ID: mdl-29618096

ABSTRACT

Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.


Subject(s)
Cerebral Cortex/pathology , Gray Matter/pathology , Neuroimaging/methods , Schizophrenia/pathology , White Matter/pathology , Adult , Cerebral Cortex/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
18.
Brain Imaging Behav ; 13(5): 1236-1245, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30109597

ABSTRACT

The white matter connections between the midbrain dopamine neurons and the striatum are part of a neural system involved in reward-based learning, a process that is impaired in patients with schizophrenia. The striato-nigro-striatal (SNS) tract, which participates in this process, has not as yet been explored. The present study aimed to use diffusion MRI (dMRI) to delineate the SNS tract, and to compare the application of two dMRI measures, Tract Dispersion (TD), an index of white matter morphology, and Fractional Anisotropy (FA), an index of white matter integrity, to detect group differences between patients with chronic schizophrenia (CSZ) and healthy controls (HC). dMRI scans were acquired in 22 male patients with CSZ and 23 age-matched HC. Two-tensor tractography was used in addition to manually-delineated regions of interest to extract the SNS tract. A mixed-model analysis of variance was used to investigate differences in TD and FA between CSZ patients and HC. The associations between TD and behavioral measures were also explored. Patients and controls differed significantly in TD (P = 0.04), but not in FA (P = 0.69). The group differences in TD were driven by a higher TD in the right hemisphere in the CSZ group. Higher TD correlated significantly with poorer performance in the Iowa Gambling Task (IGT) when combining the scores of both groups. The findings suggest that dysconnectiviy of the SNS tract which is associated with schizophrenia, could arise from abnormalities in white matter morphology. These abnormalities may potentially reflect irregularities in brain development.


Subject(s)
Corpus Striatum , Schizophrenia , Substantia Nigra , Adult , Anisotropy , Corpus Striatum/pathology , Diffusion Magnetic Resonance Imaging , Humans , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Substantia Nigra/pathology , White Matter/physiopathology
19.
Soc Psychiatry Psychiatr Epidemiol ; 54(3): 291-301, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30488086

ABSTRACT

PURPOSE: The current study evaluates the demographic, clinical, and neurocognitive characteristics of a recruited FEP research sample, a research control group, and a FEP clinic sample that were assessed and treated within the same center and time period. METHODS: This study utilized data collected through an observational study and a retrospective chart review. Samples were ascertained in the Longitudinal Assessment and Monitoring of Clinical Status and Brain Function in Adolescents and Adults study and the Prevention and Recovery in Early Psychosis clinic. FEP clinic patients (n = 77), FEP research participants (n = 44), and age-matched controls (n = 38) were assessed using the MATRICS consensus cognitive battery and global functioning social and role scales. Between-group differences were assessed via one-way ANOVA and Chi-square analyses. RESULTS: No significant differences were observed between groups with regard to age and gender. The FEP research sample had a higher proportion of white participants, better social and role functioning, and better neurocognitive performance when compared with the FEP clinical population. The clinic sample also had more diagnostic variability and higher prevalence of substance use disorders relative to the FEP research sample. CONCLUSIONS: Researchers should be aware of how study design and recruitment practices may impact the representativeness of samples, with particular concern for equal representation of racial minorities and patients with more severe illness. Studies should be designed to minimize burden to promote a wider range of participation.


Subject(s)
Cognition/physiology , Psychotic Disorders/psychology , Adolescent , Adult , Female , Humans , Male , Neuropsychological Tests , Retrospective Studies , Young Adult
20.
Sleep ; 42(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30476300

ABSTRACT

Study Objectives: Sleep spindles are abnormal in several neuropsychiatric conditions and have been implicated in associated cognitive symptoms. Accordingly, there is growing interest in elucidating the pathophysiology behind spindle abnormalities using rodent models of such disorders. However, whether sleep spindles can reliably be detected in mouse electroencephalography (EEG) is controversial necessitating careful validation of spindle detection and analysis techniques. Methods: Manual spindle detection procedures were developed and optimized to generate an algorithm for automated detection of events from mouse cortical EEG. Accuracy and external validity of this algorithm were then assayed via comparison to sigma band (10-15 Hz) power analysis, a proxy for sleep spindles, and pharmacological manipulations. Results: We found manual spindle identification in raw mouse EEG unreliable, leading to low agreement between human scorers as determined by F1-score (0.26 ± 0.07). Thus, we concluded it is not possible to reliably score mouse spindles manually using unprocessed EEG data. Manual scoring from processed EEG data (filtered, cubed root-mean-squared), enabled reliable detection between human scorers, and between human scorers and algorithm (F1-score > 0.95). Algorithmically detected spindles correlated with changes in sigma-power and were altered by the following conditions: sleep-wake state changes, transitions between NREM and REM sleep, and application of the hypnotic drug zolpidem (10 mg/kg, intraperitoneal). Conclusions: Here we describe and validate an automated paradigm for rapid and reliable detection of spindles from mouse EEG recordings. This technique provides a powerful tool to facilitate investigations of the mechanisms of spindle generation, as well as spindle alterations evident in mouse models of neuropsychiatric disorders.


Subject(s)
Brain Waves/physiology , Electroencephalography/methods , Sleep, REM/physiology , Sleep, Slow-Wave/physiology , Algorithms , Animals , Biological Assay , Data Collection , Female , Humans , Hypnotics and Sedatives , Male , Mice , Mice, Inbred C57BL , Records , Zolpidem/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...