Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Optom Vis Sci ; 101(6): 358-367, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38990235

ABSTRACT

SIGNIFICANCE: This study has shown a vibrotactile sensory substitution device (SSD) prototype, VibroSight, has the potential to improve functional outcomes (i.e., obstacle avoidance, face detection) for people with profound vision loss, even with brief familiarization (<20 minutes). PURPOSE: Mobility aids such as long canes are still the mainstay of support for most people with vision loss, but they do have limitations. Emerging technologies such as SSDs are gaining widespread interest in the low vision community. The aim of this project was to assess the efficacy of a prototype vibrotactile SSD for people with profound vision loss in the face detection and obstacle avoidance tasks. METHODS: The VibroSight device was tested in a movement laboratory setting. The first task involved obstacle avoidance, in which participants were asked to walk through an obstacle course. The second was a face detection task, in which participants were asked to step toward the first face they detected. Exit interviews were also conducted to gather user experience data. Both people with low vision (n = 7) and orientation and mobility instructors (n = 4) completed the tasks. RESULTS: In obstacle avoidance task, participants were able to use the device to detect (p<0.001) and avoid (p<0.001) the obstacles within a significantly larger range, but were slower (p<0.001), when compared with without the device. In face detection task, participants demonstrated a great level of accuracy, precision, and sensitivity when using the device. Interviews revealed a positive user experience, although participants identified that they would require a lighter and compact design for real-world use. CONCLUSIONS: Overall, the results verified the functionality of vibrotactile SSD prototype. Further research is warranted to evaluate the user performance after an extended training program and to add new features, such as object recognition software algorithms, into the device.


Subject(s)
Equipment Design , Sensory Aids , Vibration , Humans , Vibration/therapeutic use , Male , Female , Middle Aged , Adult , Vision, Low/physiopathology , Vision, Low/rehabilitation , Touch/physiology , Aged , Visually Impaired Persons/rehabilitation
2.
Transl Vis Sci Technol ; 9(8): 25, 2020 07.
Article in English | MEDLINE | ID: mdl-32864194

ABSTRACT

Translational research in vision prosthetics, gene therapy, optogenetics, stem cell and other forms of transplantation, and sensory substitution is creating new therapeutic options for patients with neural forms of blindness. The technical challenges faced by each of these disciplines differ considerably, but they all face the same challenge of how to assess vision in patients with ultra-low vision (ULV), who will be the earliest subjects to receive new therapies. Historically, there were few tests to assess vision in ULV patients. In the 1990s, the field of visual prosthetics expanded rapidly, and this activity led to a heightened need to develop better tests to quantify end points for clinical studies. Each group tended to develop novel tests, which made it difficult to compare outcomes across groups. The common lack of validation of the tests and the variable use of controls added to the challenge of interpreting the outcomes of these clinical studies. In 2014, at the bi-annual International "Eye and the Chip" meeting of experts in the field of visual prosthetics, a group of interested leaders agreed to work cooperatively to develop the International Harmonization of Outcomes and Vision Endpoints in Vision Restoration Trials (HOVER) Taskforce. Under this banner, more than 80 specialists across seven topic areas joined an effort to formulate guidelines for performing and reporting psychophysical tests in humans who participate in clinical trials for visual restoration. This document provides the complete version of the consensus opinions from the HOVER taskforce, which, together with its rules of governance, will be posted on the website of the Henry Ford Department of Ophthalmology (www.artificialvision.org). Research groups or companies that choose to follow these guidelines are encouraged to include a specific statement to that effect in their communications to the public. The Executive Committee of the HOVER Taskforce will maintain a list of all human psychophysical research in the relevant fields of research on the same website to provide an overview of methods and outcomes of all clinical work being performed in an attempt to restore vision to the blind. This website will also specify which scientific publications contain the statement of certification. The website will be updated every 2 years and continue to exist as a living document of worldwide efforts to restore vision to the blind. The HOVER consensus document has been written by over 80 of the world's experts in vision restoration and low vision and provides recommendations on the measurement and reporting of patient outcomes in vision restoration trials.


Subject(s)
Vision, Ocular , Visual Prosthesis , Blindness , Consensus , Humans , Vision Disorders/therapy
3.
Invest Ophthalmol Vis Sci ; 58(7): 3231-3239, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28660276

ABSTRACT

Purpose: With a retinal prosthesis connected to a head-mounted camera, subjects can perform low vision tasks using a combination of electrode discrimination and head-directed localization. The objective of the present study was to investigate the contribution of retinotopic electrode discrimination (perception corresponding to the arrangement of the implanted electrodes with respect to their position beneath the retina) to visual performance for three recipients of a 24-channel suprachoroidal retinal implant. Proficiency in retinotopic discrimination may allow good performance with smaller head movements, and identification of this ability would be useful for targeted rehabilitation. Methods: Three participants with retinitis pigmentosa performed localization and grating acuity assessments using a suprachoroidal retinal prosthesis. We compared retinotopic and nonretinotopic electrode mapping and hypothesized that participants with measurable acuity in a normal retinotopic condition would be negatively impacted by the nonretinotopic condition. We also expected that participants without measurable acuity would preferentially use head movement over retinotopic information. Results: Only one participant was able to complete the grating acuity task. In the localization task, this participant exhibited significantly greater head movements and significantly lower localization scores when using the nonretinotopic electrode mapping. There was no significant difference in localization performance or head movement for the remaining two subjects when comparing retinotopic to nonretinotopic electrode mapping. Conclusions: Successful discrimination of retinotopic information is possible with a suprachoroidal retinal prosthesis. Head movement behavior during a localization task can be modified using a nonretinotopic mapping. Behavioral comparisons using retinotopic and nonretinotopic electrode mapping may be able to highlight deficiencies in retinotopic discrimination, with a view to address these deficiencies in a rehabilitation environment. (ClinicalTrials.gov number, NCT01603576).


Subject(s)
Blindness/rehabilitation , Electrodes, Implanted , Retinitis Pigmentosa/complications , Visual Prosthesis , Blindness/physiopathology , Evoked Potentials, Visual/physiology , Female , Head Movements , Humans , Male , Middle Aged , Retinitis Pigmentosa/physiopathology , Visual Acuity/physiology
4.
PLoS One ; 9(12): e115239, 2014.
Article in English | MEDLINE | ID: mdl-25521292

ABSTRACT

UNLABELLED: Retinal visual prostheses ("bionic eyes") have the potential to restore vision to blind or profoundly vision-impaired patients. The medical bionic technology used to design, manufacture and implant such prostheses is still in its relative infancy, with various technologies and surgical approaches being evaluated. We hypothesised that a suprachoroidal implant location (between the sclera and choroid of the eye) would provide significant surgical and safety benefits for patients, allowing them to maintain preoperative residual vision as well as gaining prosthetic vision input from the device. This report details the first-in-human Phase 1 trial to investigate the use of retinal implants in the suprachoroidal space in three human subjects with end-stage retinitis pigmentosa. The success of the suprachoroidal surgical approach and its associated safety benefits, coupled with twelve-month post-operative efficacy data, holds promise for the field of vision restoration. TRIAL REGISTRATION: Clinicaltrials.gov NCT01603576.


Subject(s)
Ophthalmologic Surgical Procedures/instrumentation , Retinitis Pigmentosa/surgery , Visual Prosthesis/adverse effects , Choroid/surgery , Female , Humans , Male , Middle Aged , Ophthalmologic Surgical Procedures/methods , Postoperative Complications , Sclera/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...