Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(17): 8103-24, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27491023

ABSTRACT

Structure-activity relationships for inhibition of erbB1, erbB2, and erbB4 were determined for a series of quinazoline- and pyrido[3,4-d]pyrimidine-based analogues of the irreversible pan-erbB inhibitor, canertinib. Cyclic amine bearing crotonamides were determined to provide rapid inhibition of cellular erbB1 autophosphorylation and good metabolic stability in liver microsome and hepatocyte assays. The influence of 4-anilino substitution on pan-erbB inhibitory potency was investigated. Several anilines were identified as providing potent, reversible pan-erbB inhibition. Optimum 4- and 6-substituents with known 7-substituents provided preferred irreversible inhibitors for pharmacodynamic testing in vivo. Quinazoline 54 and pyrido[3,4-d]pyrimidine 71 were identified as clearly superior to canertinib. Both compounds possess a piperidinyl crotonamide Michael acceptor and a 3-chloro-4-fluoroaniline, indicating these as optimized 6- and 4-substituents, respectively. Pharmacokinetic comparison of compounds 54 and 71 across three species selected compound 54 as the preferred candidate. Compound 54 (PF-00299804) has been assigned the nomenclature of dacomitinib and is currently under clinical evaluation.


Subject(s)
Antineoplastic Agents/chemistry , ErbB Receptors/antagonists & inhibitors , Morpholines/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Quinazolines/chemistry , Quinazolinones/chemistry , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Dogs , Heterografts , Humans , Injections, Intravenous , Macaca fascicularis , Male , Mice, Nude , Morpholines/chemical synthesis , Morpholines/pharmacokinetics , Morpholines/pharmacology , Neoplasm Transplantation , Phosphorylation , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Quinazolinones/chemical synthesis , Quinazolinones/pharmacokinetics , Quinazolinones/pharmacology , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...