Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Rheumatol ; 29(3): 510-522, 2019 May.
Article in English | MEDLINE | ID: mdl-29862859

ABSTRACT

OBJECTIVES: Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase required for intracellular signaling downstream of multiple immunoreceptors. We evaluated ABBV-105, a covalent BTK inhibitor, using in vitro and in vivo assays to determine potency, selectivity, and efficacy to validate the therapeutic potential of ABBV-105 in inflammatory disease. METHODS: ABBV-105 potency and selectivity were evaluated in enzymatic and cellular assays. The impact of ABBV-105 on B cell function in vivo was assessed using mechanistic models of antibody production. Efficacy of ABBV-105 in chronic inflammatory disease was evaluated in animal models of arthritis and lupus. Measurement of BTK occupancy was employed as a target engagement biomarker. RESULTS: ABBV-105 irreversibly inhibits BTK, demonstrating superior kinome selectivity and is potent in B cell receptor, Fc receptor, and TLR-9-dependent cellular assays. Oral administration resulted in rapid clearance in plasma, but maintenance of BTK splenic occupancy. ABBV-105 inhibited antibody responses to thymus-independent and thymus-dependent antigens, paw swelling and bone destruction in rat collagen induced arthritis, and reduced disease in an IFNα-accelerated lupus nephritis model. BTK occupancy in disease models correlated with in vivo efficacy. CONCLUSION: ABBV-105, a selective BTK inhibitor, demonstrates compelling efficacy in pre-clinical mechanistic models of antibody production and in models of rheumatoid arthritis and lupus.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Antirheumatic Agents/pharmacology , Cell Line , Humans , Rats , Rats, Inbred Lew , Spodoptera
2.
Toxicol Pathol ; 44(7): 998-1012, 2016 10.
Article in English | MEDLINE | ID: mdl-27324990

ABSTRACT

Spleen tyrosine kinase (Syk) is a nonreceptor tyrosine kinase that is an important signaling enzyme downstream of immunoreceptors containing an intracellular immunoreceptor tyrosine activating motif (ITAM). These receptors encompass a wide variety of biological functions involved in autoimmune disease pathogenesis. There has been considerable interest in the development of inhibitors of the Syk pathway for the treatment of rheumatoid arthritis and systemic lupus erythematosus. We report that Syk inhibition mechanistically caused peri-islet hemorrhages and fibrin deposition in the rat pancreas and that this finding is due to a homeostatic functional defect in platelets. In more limited studies, similar lesions could not be induced in mice, dogs, and cynomolgus monkeys at similar or higher plasma drug concentrations. Irradiation-induced thrombocytopenia caused a phenotypically similar peri-islet pancreas lesion and the formation of this lesion could be prevented by platelet transfusion. In addition, Syk inhibitor-induced lesions were prevented by the coadministration of prednisone. A relatively greater sensitivity of rat platelets to Syk inhibition was supported by functional analyses demonstrating rat-specific differences in response to convulxin, a glycoprotein VI agonist that signals through Syk. These data demonstrate that the Syk pathway is critical in platelet-endothelial cell homeostasis in the peri-islet pancreatic microvasculature in rats.


Subject(s)
Blood Platelets/metabolism , Enzyme Inhibitors/toxicity , Hemorrhage/chemically induced , Islets of Langerhans/drug effects , Syk Kinase/antagonists & inhibitors , Animals , Blood Platelets/drug effects , Dogs , Islets of Langerhans/pathology , Macaca fascicularis , Mice , Rats , Rats, Sprague-Dawley , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...