Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 24(6): e2300492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38414380

ABSTRACT

The physiological problem of chronic inflammation and its associated pathologies attract ongoing attention with regard to methods for their control. Current systemic pharmacological treatments present problematic side effects. Thus, the possibility of new anti-inflammatory compounds with differing mechanisms of action or biophysical properties is enticing. Cationic polymers, with their ability to act as carriers for other molecules or to form bio-compatible materials, present one such possibility. Although not well described, several polycations such as chitosan and polyarginine, have displayed anti-inflammatory properties. The present work shows the ubiquitous laboratory transfection reagent, polyethylenimine (PEI) and more specifically low molecular weight branched PEI (B-PEI) as also possessing such properties. Using a RAW264.7 murine cell line macrophage as an inflammation model, it is found the B-PEI 700 Da as being capable of reducing the production of several pro-inflammatory molecules induced by the endotoxin lipopolysaccharide. Although further studies are required for elucidation of its mechanisms, the revelation that such a common lab reagent may present these effects has wide-ranging implications, as well as an abundance of possibilities.


Subject(s)
Lipopolysaccharides , Macrophages , Polyethyleneimine , Animals , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Mice , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , RAW 264.7 Cells , Inflammation/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Biomarkers/metabolism , Cell Line
2.
Cancers (Basel) ; 14(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36291841

ABSTRACT

The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.

3.
Chem Biol Interact ; 367: 110167, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36087816

ABSTRACT

Cancer stem cells (CSCs) represent a difficult to treat cellular niche within tumours due to their unique characteristics, which give them a high propensity for resistance to classical anti-cancer treatments and the ability to repopulate the tumour mass. An attribute that may be implicated in the high rates of recurrence of certain tumours. However, other characteristics specific to these cells, such as their high dependence on mitochondria, may be exploited for the development of new therapeutic agents that are effective against the niche. As such, a previously described phosphorescent N-heterocyclic carbene iridium(III) compound which showed a high level of cytotoxicity against classical tumour cell lines with mitochondria-specific effects was studied for its potential against CSCs. The results showed a significantly higher level of activity against several CSC lines compared to non-CSCs. Mitochondrial localisation and superoxide production were confirmed. Although the cell death involved caspase activation, their role in cell death was not definitive, with a potential implication of other, non-apoptotic pathways shown. A cytostatic effect of the compound was also displayed at low mortality doses. This study thus provides important insights into the mechanisms and the potential for this class of molecule in the domain of anti-CSC therapeutics.


Subject(s)
Antineoplastic Agents , Cytostatic Agents , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Caspases/metabolism , Cytostatic Agents/pharmacology , Iridium/metabolism , Iridium/pharmacology , Methane/analogs & derivatives , Neoplastic Stem Cells/metabolism , Superoxides/metabolism
4.
J Funct Biomater ; 14(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36662064

ABSTRACT

Cationic polymers such as polyethylenimine (PEI) have found a pervasive place in laboratories across the world as gene delivery agents. However, their applications are not limited to this role, having found a place as delivery agents for drugs, in complexes known as polymer-drug conjugates (PDCs). Yet a potentially underexplored domain of research is in their inherent potential as anti-cancer therapeutic agents, which has been indicated by several studies. Even more interesting is the recent observation that certain polycations may present a significantly greater toxicity towards the clinically important cancer stem cell (CSC) niche than towards more differentiated bulk tumour cells. These cells, which possess the stem-like characteristics of self-renewal and differentiation, are highly implicated in cancer drug resistance, tumour recurrence and poor clinical prognosis. The search for compounds which may target and eliminate these cells is thus of great research interest. As such, the observation in our previous study on a PEI-based PDC which showed a considerably higher toxicity of PEI towards glioblastoma CSCs (GSCs) than on more differentiated glioma (U87) cells led us to investigate other cationic polymers for a similar effect. The evaluation of the toxicity of a range of different types of polycations, and an investigation into the potential source of GSC's sensitivity to such compounds is thus described.

SELECTION OF CITATIONS
SEARCH DETAIL
...