Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Neurosci ; 43(47): 8043-8057, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37722850

ABSTRACT

The malignant brain cancer glioblastoma (GBM) contains groups of highly invasive cells that drive tumor progression as well as recurrence after surgery and chemotherapy. The molecular mechanisms that enable these GBM cells to exit the primary mass and disperse throughout the brain remain largely unknown. Here we report using human tumor specimens and primary spheroids from male and female patients that glial cell adhesion molecule (GlialCAM), which has normal roles in brain astrocytes and is mutated in the developmental brain disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC), is differentially expressed in subpopulations of GBM cells. High levels of GlialCAM promote cell-cell adhesion and a proliferative GBM cell state in the tumor core. In contrast, GBM cells with low levels of GlialCAM display diminished proliferation and enhanced invasion into the surrounding brain parenchyma. RNAi-mediated inhibition of GlialCAM expression leads to activation of proinvasive extracellular matrix adhesion and signaling pathways. Profiling GlialCAM-regulated genes combined with cross-referencing to single-cell transcriptomic datasets validates functional links among GlialCAM, Mlc1, and aquaporin-4 in the invasive cell state. Collectively, these results reveal an important adhesion and signaling axis comprised of GlialCAM and associated proteins including Mlc1 and aquaporin-4 that is critical for control of GBM cell proliferation and invasion status in the brain cancer microenvironment.SIGNIFICANCE STATEMENT Glioblastoma (GBM) contains heterogeneous populations of cells that coordinately drive proliferation and invasion. We have discovered that glial cell adhesion molecule (GlialCAM)/hepatocyte cell adhesion molecule (HepaCAM) is highly expressed in proliferative GBM cells within the tumor core. In contrast, GBM cells with low levels of GlialCAM robustly invade into surrounding brain tissue along blood vessels and white matter. Quantitative RNA sequencing identifies various GlialCAM-regulated genes with functions in cell-cell adhesion and signaling. These data reveal that GlialCAM and associated signaling partners, including Mlc1 and aquaporin-4, are key factors that determine proliferative and invasive cell states in GBM.


Subject(s)
Aquaporins , Glioblastoma , Female , Humans , Male , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Cycle Proteins/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Membrane Proteins/metabolism , Tumor Microenvironment , Cell Proliferation , Neoplasm Invasiveness
2.
Cancer Res ; 83(8): 1167-1169, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37057598

ABSTRACT

Although brain metastases are 10-fold more prevalent than primary brain cancers, relatively little is understood about the genes and pathways that promote metastatic cell entry, growth, and survival in the brain. Hence, determining how metastatic tumors colonize the brain and thrive within the neural microenvironment is a topic of both fundamental importance and direct clinical relevance. In this issue, a report by Karreman and colleagues explores pathways that are exploited by metastatic tumor cells to arrest in the circulation, cross the endothelial blood-brain barrier (BBB), and thrive in the brain microenvironment. The authors used elegant imaging tools including intravital fluorescence microcopy and serial reconstruction of ultrastructural sections to analyze BBB breach and subsequent colonization of the brain. They show that matrix metalloprotease 9 (MMP9) plays a central role in these events. Pharmacologic or genetic targeting of MMP9 significantly reduced penetration across the BBB and limited micrometastasis formation. Surprisingly, extravasation and brain colonization does not involve significant degradation of canonical MMP9 protein targets such as collagen and laminin in vascular basement membranes, indicating the requirement for other extracellular matrix (ECM) or non-ECM substrates for MMP9. Collectively, these new and important findings reveal cell-cell adhesion and signaling events between cerebral endothelial and metastatic cancer cells as well as identify potential therapeutic targets to prevent metastatic tumor cell dissemination in the brain. See related article by Karreman et al., p. 1299.


Subject(s)
Blood-Brain Barrier , Neoplasms , Humans , Blood-Brain Barrier/metabolism , Endothelium, Vascular/metabolism , Matrix Metalloproteinase 9/metabolism , Brain/metabolism , Cell Line, Tumor , Neoplasms/metabolism
3.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36960827

ABSTRACT

The blood-brain barrier (BBB) is a vascular endothelial cell boundary that partitions the circulation from the central nervous system to promote normal brain health. We have a limited understanding of how the BBB is formed during development and maintained in adulthood. We used quantitative transcriptional profiling to investigate whether specific adhesion molecules are involved in BBB functions, with an emphasis on understanding how astrocytes interact with endothelial cells. Our results reveal a striking enrichment of multiple genes encoding laminin subunits as well as the laminin receptor gene Itga7, which encodes the alpha7 integrin subunit, in astrocytes. Genetic ablation of Itga7 in mice led to aberrant BBB permeability and progressive neurological pathologies. Itga7-/- mice also showed a reduction in laminin protein expression in parenchymal basement membranes. Blood vessels in the Itga7-/- brain showed separation from surrounding astrocytes and had reduced expression of the tight junction proteins claudin 5 and ZO-1. We propose that the alpha7 integrin subunit in astrocytes via adhesion to laminins promotes endothelial cell junction integrity, all of which is required to properly form and maintain a functional BBB.


Subject(s)
Astrocytes , Blood-Brain Barrier , Mice , Animals , Blood-Brain Barrier/metabolism , Laminin/metabolism , Endothelial Cells/metabolism , Integrins/metabolism , Tight Junctions/metabolism
4.
Development ; 149(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35217866

ABSTRACT

In the developing mammalian brain, neuroepithelial cells interact with blood vessels to regulate angiogenesis, blood-brain barrier maturation and other key neurovascular functions. Genetic studies in mice have shown that neurovascular development is controlled, in part, by Itgb8, which encodes the neuroepithelial cell-expressed integrin ß8 subunit. However, these studies have involved complete loss-of-function Itgb8 mutations, and have not discerned the relative roles for the ß8 integrin extracellular matrix (ECM) binding region versus the intracellular signaling tail. Here, Cre/lox strategies have been employed to selectively delete the cytoplasmic tail of murine Itgb8 without perturbing its transmembrane and extracellular domains. We report that the ß8 integrin cytoplasmic domain is essential for inside-out modulation of adhesion, including activation of latent-TGFßs in the ECM. Quantitative sequencing of the brain endothelial cell transcriptome identifies TGFß-regulated genes with putative links to blood vessel morphogenesis, including several genes linked to Wnt/ß-catenin signaling. These results reveal that the ß8 integrin cytoplasmic domain is essential for the regulation of TGFß-dependent gene expression in endothelial cells and suggest that cross-talk between TGFßs and Wnt pathways is crucial for neurovascular development.


Subject(s)
Endothelial Cells , Integrin beta Chains , Animals , Brain/metabolism , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Integrins/genetics , Integrins/metabolism , Mammals/metabolism , Mice , Transforming Growth Factor beta/metabolism
5.
J Neurosci ; 42(8): 1406-1416, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34965971

ABSTRACT

In the mammalian brain, perivascular astrocytes (PAs) closely juxtapose blood vessels and are postulated to have important roles in the control of vascular physiology, including regulation of the blood-brain barrier (BBB). Deciphering specific functions for PAs in BBB biology, however, has been limited by the ability to distinguish these cells from other astrocyte populations. In order to characterize selective roles for PAs in vivo, a new mouse model has been generated in which the endogenous megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) gene drives expression of Cre fused to a mutated estrogen ligand-binding domain (Mlc1-T2A-CreERT2). This knock-in mouse model, which we term MLCT, allows for selective identification and tracking of PAs in the postnatal brain. We also demonstrate that MLCT-mediated ablation of PAs causes severe defects in BBB integrity, resulting in premature death. PA loss results in aberrant localization of Claudin 5 and -VE-Cadherin in endothelial cell junctions as well as robust microgliosis. Collectively, these data reveal essential functions for Mlc1-expressing PAs in regulating endothelial barrier integrity in mice and indicate that primary defects in astrocytes that cause BBB breakdown may contribute to human neurologic disorders.SIGNIFICANCE STATEMENT Interlaced among the billions of neurons and glia in the mammalian brain is an elaborate network of blood vessels. Signals from the brain parenchyma control the unique permeability properties of cerebral blood vessels known as the blood-brain barrier (BBB). However, we understand very little about the relative contributions of different neural cell types in the regulation of BBB functions. Here, we show that a specific subpopulation of astrocyte is essential for control of BBB integrity, with ablation of these cells leading to defects in endothelial cell junctions, BBB breakdown, and resulting neurologic deficits.


Subject(s)
Astrocytes , Hereditary Central Nervous System Demyelinating Diseases , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Claudin-5/genetics , Cysts , Disease Models, Animal , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Mammals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice
6.
Glia ; 69(1): 91-108, 2021 01.
Article in English | MEDLINE | ID: mdl-32744761

ABSTRACT

In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners ß3 or ß8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.


Subject(s)
Schwann Cells , Animals , Axons , Integrin alphaV , Integrins , Mice , Oligopeptides
7.
PLoS One ; 15(10): e0240035, 2020.
Article in English | MEDLINE | ID: mdl-33031376

ABSTRACT

In the post-natal mammalian brain perivascular astrocytes (PAs) ensheath blood vessels to regulate their unique permeability properties known as the blood-brain barrier (BBB). Very little is known about PA-expressed genes and signaling pathways that mediate contact and communication with endothelial cells (ECs) to regulate BBB physiology. This is due, in part, to lack of suitable models to distinguish PAs from other astrocyte sub-populations in the brain. To decipher the unique biology of PAs, we used in vivo gene knock-in technology to fluorescently label these cells in the adult mouse brain followed by fractionation and quantitative single cell RNA sequencing. In addition, PAs and non-PAs were also distinguished with transgenic fluorescent reporters followed by gene expression comparisons using bulk RNA sequencing. These efforts have identified several genes and pathways in PAs with potential roles in contact and communication with brain ECs. These genes encode various extracellular matrix (ECM) proteins and adhesion receptors, secreted growth factors, and intracellular signaling enzymes. Collectively, our experimental data reveal a set of genes that are expressed in PAs with putative roles in BBB physiology.


Subject(s)
Astrocytes/metabolism , Blood Vessels/metabolism , Animals , Astrocytes/cytology , Blood Vessels/cytology , Blood-Brain Barrier/metabolism , Brain/cytology , Brain/pathology , Cell Communication/genetics , Cells, Cultured , Cluster Analysis , Endothelial Cells/cytology , Endothelial Cells/metabolism , Extracellular Matrix Proteins/metabolism , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
8.
Oncogene ; 39(50): 7253-7264, 2020 12.
Article in English | MEDLINE | ID: mdl-33040087

ABSTRACT

Glioblastoma (GBM), or grade IV astrocytoma, is a malignant brain cancer that contains subpopulations of proliferative and invasive cells that coordinately drive primary tumor growth, progression, and recurrence after therapy. Here, we have analyzed functions for megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1), an eight-transmembrane protein normally expressed in perivascular brain astrocyte end feet that is essential for neurovascular development and physiology, in the pathogenesis of GBM. We show that Mlc1 is expressed in human stem-like GBM cells (GSCs) and is linked to the development of primary and recurrent GBM. Genetically inhibiting MLC1 in GSCs using RNAi-mediated gene silencing results in diminished growth and invasion in vitro as well as impaired tumor initiation and progression in vivo. Biochemical assays identify the receptor tyrosine kinase Axl and its intracellular signaling effectors as important for MLC1 control of GSC invasive growth. Collectively, these data reveal key functions for MLC1 in promoting GSC growth and invasion, and suggest that targeting the Mlc1 protein or its associated signaling effectors may be a useful therapy for blocking tumor progression in patients with primary or recurrent GBM.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Glioblastoma/pathology , Membrane Proteins/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Cell Polarity , Cell Proliferation , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction
9.
Development ; 147(18)2020 09 23.
Article in English | MEDLINE | ID: mdl-32895288

ABSTRACT

The central nervous system (CNS) contains a complex network of blood vessels that promote normal tissue development and physiology. Abnormal control of blood vessel morphogenesis and maturation is linked to the pathogenesis of various neurodevelopmental diseases. The CNS-specific genes that regulate blood vessel morphogenesis in development and disease remain largely unknown. Here, we have characterized functions for the gene encoding prion protein 2 (Prnd) in CNS blood vessel development and physiology. Prnd encodes the glycosylphosphatidylinositol (GPI)-linked protein doppel, which is expressed on the surface of angiogenic vascular endothelial cells, but is absent in quiescent endothelial cells of the adult CNS. During CNS vascular development, doppel interacts with receptor tyrosine kinases and activates cytoplasmic signaling pathways involved in endothelial cell survival, metabolism and migration. Analysis of mice genetically null for Prnd revealed impaired CNS blood vessel morphogenesis and associated endothelial cell sprouting defects. Prnd-/- mice also displayed defects in endothelial barrier integrity. Collectively, these data reveal novel mechanisms underlying doppel control of angiogenesis in the developing CNS, and may provide new insights about dysfunctional pathways that cause vascular-related CNS disorders.


Subject(s)
Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/physiology , Prion Proteins/metabolism , Animals , Central Nervous System/metabolism , Cytoplasm/metabolism , GPI-Linked Proteins/metabolism , Mice , Morphogenesis/physiology , Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology
10.
J Cell Sci ; 133(12)2020 06 15.
Article in English | MEDLINE | ID: mdl-32540905

ABSTRACT

Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvß8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvß8 integrin is a receptor for ECM-bound forms of latent transforming growth factor ß (TGFß) proteins and promotes the activation of TGFß signaling pathways. Studies of the brain, lung and immune system reveal that the αvß8 integrin-TGFß axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer. As discussed in this Review, understanding the functions for αvß8 integrin, its ECM ligands and intracellular effector proteins is not only an important topic in cell biology, but may lead to new therapeutic strategies to treat human pathologies related to integrin dysfunction.


Subject(s)
Integrins , Signal Transduction , Cell Adhesion , Humans , Integrins/genetics , Transforming Growth Factor beta
11.
Int J Cancer ; 143(11): 3019-3026, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29923182

ABSTRACT

We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of nonsmall cell lung cancer, breast cancer and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry) and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification and mutations among brain metastases, extracranial metastases and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8,178 nonsmall cell lung cancers (5,098 primaries; 2,787 systemic metastases; 293 brain metastases), 7,064 breast cancers (3,496 primaries; 3,469 systemic metastases; 99 brain metastases) and 1,757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1 and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication and/or repair.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Aged , Female , Gene Expression/genetics , Humans , Male , Middle Aged , Mutation/genetics
12.
Sci Rep ; 8(1): 8267, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844613

ABSTRACT

Disruption of the blood-brain barrier (BBB) by cancer cells is linked to metastatic tumor initiation and progression; however, the pathways that drive these events remain poorly understood. Here, we have developed novel patient-derived xenograft (PDX) models of brain metastases that recapitulate pathological growth features found in original patient samples, thus allowing for analysis of BBB disruption by tumor cells. We report that the BBB is selectively disrupted in brain metastases, in part, via inhibition of the endothelial cell-expressed docosahexaenoic acid (DHA) transporter, major facilitator superfamily domain 2a (Mfsd2a). Loss of Mfsd2a expression in the tumor endothelium results in enhanced BBB leakage, but reduced DHA transport and altered lipid metabolism within metastases. Mfsd2a expression in normal cerebral endothelial cells is cooperatively regulated by TGFß and bFGF signaling pathways, and these pathways are pathologically diminished in the brain metastasis endothelium. These results not only reveal a fundamental pathway underlying BBB disruption by metastatic cancer cells, but also suggest that restoring DHA metabolism in the brain tumor microenvironment may be a novel therapeutic strategy to block metastatic cell growth and survival.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Neoplasms/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Biological Transport , Brain/metabolism , Disease Models, Animal , Docosahexaenoic Acids/metabolism , Endothelial Cells/metabolism , Fatty Acid Transport Proteins/metabolism , Fatty Acids/metabolism , Female , Humans , Ion Transport , Lipid Metabolism/physiology , Male , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Nude , Neoplasm Metastasis/physiopathology , Signal Transduction , Symporters , Tumor Microenvironment , Tumor Suppressor Proteins/physiology , Xenograft Model Antitumor Assays
13.
Cancer Res ; 78(14): 3809-3822, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29743287

ABSTRACT

Glioblastoma (GBM) is an invasive brain cancer with tumor cells that disperse from the primary mass, escaping surgical resection and invariably giving rise to lethal recurrent lesions. Here we report that PTP-PEST, a cytoplasmic protein tyrosine phosphatase, controls GBM cell invasion by physically bridging the focal adhesion protein Crk-associated substrate (Cas) to valosin-containing protein (Vcp), an ATP-dependent protein segregase that selectively extracts ubiquitinated proteins from multiprotein complexes and targets them for degradation via the ubiquitin proteasome system. Both Cas and Vcp are substrates for PTP-PEST, with the phosphorylation status of tyrosine 805 (Y805) in Vcp impacting affinity for Cas in focal adhesions and controlling ubiquitination levels and protein stability. Perturbing PTP-PEST-mediated phosphorylation of Cas and Vcp led to alterations in GBM cell-invasive growth in vitro and in preclinical mouse models. Collectively, these data reveal a novel regulatory mechanism involving PTP-PEST, Vcp, and Cas that dynamically balances phosphorylation-dependent ubiquitination of key focal proteins involved in GBM cell invasion.Significance: PTP-PEST balances GBM cell growth and invasion by interacting with the ATP-dependent ubiquitin segregase Vcp/p97 and regulating phosphorylation and stability of the focal adhesion protein p130Cas.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3809/F1.large.jpg Cancer Res; 78(14); 3809-22. ©2018 AACR.


Subject(s)
Focal Adhesions/genetics , Glioblastoma/genetics , Phosphorylation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 12/genetics , Ubiquitination/genetics , Animals , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Crk-Associated Substrate Protein/genetics , Glioblastoma/pathology , HEK293 Cells , Humans , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Tyrosine/genetics , Valosin Containing Protein/genetics
14.
Adv Pharmacol ; 81: 129-153, 2018.
Article in English | MEDLINE | ID: mdl-29310797

ABSTRACT

During vascular development, endothelial cells (ECs) and neighboring stromal cells interact and communicate through autocrine and paracrine signaling mechanisms involving extracellular matrix (ECM) proteins and their cell surface integrin adhesion receptors. Integrin-mediated adhesion and signaling pathways are crucial for normal vascular development and physiology, and alterations in integrin expression and/or function drive several vascular-related pathologies including thrombosis, autoimmune disorders, and cancer. The purpose of this chapter is to discuss integrin adhesion and signaling pathways important for EC growth, survival, and migration. Integrin-mediated paracrine links between ECs and surrounding stromal cells in the organ microenvironment will also be discussed. Lastly, we will review roles for integrins in vascular pathologies and discuss possible targets for therapeutic intervention.


Subject(s)
Blood Vessels/growth & development , Blood Vessels/pathology , Integrins/metabolism , Animals , Apoptosis , Endothelial Cells/metabolism , Humans , Lymphangiogenesis , Signal Transduction
15.
PLoS One ; 12(9): e0185065, 2017.
Article in English | MEDLINE | ID: mdl-28938007

ABSTRACT

Glioblastoma (GBM) is a rapidly progressive brain cancer that exploits the neural microenvironment, and particularly blood vessels, for selective growth and survival. Anti-angiogenic agents such as the vascular endothelial growth factor-A (VEGF-A) blocking antibody bevacizumab yield short-term benefits to patients due to blood vessel regression and stabilization of vascular permeability. However, tumor recurrence is common, and this is associated with acquired resistance to bevacizumab. The mechanisms that drive acquired resistance and tumor recurrence in response to anti-angiogenic therapy remain largely unknown. Here, we report that Neuropilin-1 (Nrp1) regulates GBM growth and invasion by balancing tumor cell responses to VEGF-A and transforming growth factor ßs (TGFßs). Nrp1 is expressed in GBM cells where it promotes TGFß receptor internalization and signaling via Smad transcription factors. GBM that recur after bevacizumab treatment show down-regulation of Nrp1 expression, indicating that altering the balance between VEGF-A and TGFß signaling is one mechanism that promotes resistance to anti-angiogenic agents. Collectively, these data reveal that Nrp1 plays a critical role in balancing responsiveness to VEGF-A versus TGFß to regulate GBM growth, progression, and recurrence after anti-vascular therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Bevacizumab/pharmacology , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Neuropilin-1/metabolism , Transforming Growth Factor beta/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , HEK293 Cells , Humans , Male , Mice, Nude , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Transplantation , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism
16.
Genesis ; 55(10)2017 10.
Article in English | MEDLINE | ID: mdl-28929580

ABSTRACT

Perivascular astrocyte end feet closely juxtapose cerebral blood vessels to regulate important developmental and physiological processes including endothelial cell proliferation and sprouting as well as the formation of the blood-brain barrier (BBB). The mechanisms underlying these events remain largely unknown due to a lack of experimental models for identifying perivascular astrocytes and distinguishing these cell types from other astroglial populations. Megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) is a transmembrane protein that is expressed in perivascular astrocyte end feet where it controls BBB development and homeostasis. On the basis of this knowledge, we used T2A peptide-skipping strategies to engineer a knock-in mouse model in which the endogenous Mlc1 gene drives expression of enhanced green fluorescent protein (eGFP), without impacting expression of Mlc1 protein. Analysis of fetal, neonatal and adult Mlc1-eGFP knock-in mice revealed a dynamic spatiotemporal expression pattern of eGFP in glial cells, including nestin-expressing neuroepithelial cells during development and glial fibrillary acidic protein (GFAP)-expressing perivascular astrocytes in the postnatal brain. EGFP was not expressed in neurons, microglia, oligodendroglia, or cerebral vascular cells. Analysis of angiogenesis in the neonatal retina also revealed enriched Mlc1-driven eGFP expression in perivascular astrocytes that contact sprouting blood vessels and regulate blood-retinal barrier permeability. A cortical injury model revealed that Mlc1-eGFP expression is progressively induced in reactive astrocytes that form a glial scar. Hence, Mlc1-eGFP knock-in mice are a new and powerful tool to identify perivascular astrocytes in the brain and retina and characterize how these cell types regulate cerebral blood vessel functions in health and disease.


Subject(s)
Astrocytes/metabolism , Gene Knock-In Techniques/methods , Genes, Reporter , Green Fluorescent Proteins/metabolism , Membrane Proteins/metabolism , Animals , Brain/cytology , Brain/embryology , Brain/metabolism , Green Fluorescent Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Protein Biosynthesis , Retina/cytology , Retina/embryology , Retina/metabolism , Ribosomes/metabolism
17.
Genesis ; 55(8)2017 08.
Article in English | MEDLINE | ID: mdl-28653435

ABSTRACT

Application of CRISPR-Cas9 technology in diverse organisms has resulted in an explosion of genome modification efforts. To expand the toolbox of applications, we have created an E. coli Exonuclease I (sbcB)-Cas9 fusion that has altered enzymatic activity in zebrafish embryos. This Cas9 variant has increased mutation efficiency and favors longer deletions relative to wild-type Cas9. We anticipate that this variant will allow for more efficient screening for F0 phenotypes and mutation of a larger spectrum of genomic targets including deletion of regulatory regions and creating loss of function mutations in transcription units with poor sequence conservation such as lncRNAs where larger deletions may be required for loss of function.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Endonucleases/genetics , Gene Targeting/methods , Zebrafish/genetics , Animals , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Endonucleases/metabolism , Gene Deletion , Gene Targeting/standards , Loss of Function Mutation
18.
Mol Cancer Res ; 14(12): 1277-1287, 2016 12.
Article in English | MEDLINE | ID: mdl-27655131

ABSTRACT

Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvß8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of ß8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment. IMPLICATIONS: Tumor cell invasion is a major clinical obstacle in glioblastoma and this study identifies a new signaling pathway regulated by Spinophilin in invasive glioblastoma. Mol Cancer Res; 14(12); 1277-87. ©2016 AACR.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Integrins/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Podosomes/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Binding Sites , Brain Neoplasms/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Movement , Glioblastoma/metabolism , Humans , Integrins/chemistry , Mice , Microfilament Proteins/chemistry , Neoplasm Invasiveness , Neoplasm Transplantation , Nerve Tissue Proteins/chemistry , Protein Binding , Signal Transduction
19.
Development ; 142(24): 4363-73, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26586223

ABSTRACT

Angiogenesis in the developing central nervous system (CNS) is regulated by neuroepithelial cells, although the genes and pathways that couple these cells to blood vessels remain largely uncharacterized. Here, we have used biochemical, cell biological and molecular genetic approaches to demonstrate that ß8 integrin (Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells. ß8 integrin in the neuroepithelium promotes the activation of extracellular matrix (ECM)-bound latent transforming growth factor ß (TGFß) ligands and stimulates TGFß receptor signaling in endothelial cells. Nrp1 in endothelial cells suppresses TGFß activation and signaling by forming intercellular protein complexes with ß8 integrin. Cell type-specific ablation of ß8 integrin, Nrp1, or canonical TGFß receptors results in pathological angiogenesis caused by defective neuroepithelial cell-endothelial cell adhesion and imbalances in canonical TGFß signaling. Collectively, these data identify a paracrine signaling pathway that links the neuroepithelium to blood vessels and precisely balances TGFß signaling during cerebral angiogenesis.


Subject(s)
Brain/blood supply , Brain/metabolism , Integrin beta Chains/metabolism , Neovascularization, Physiologic , Neuropilin-1/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Animals , Brain/pathology , Cell Adhesion , Embryo Loss/pathology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Deletion , Male , Mice , Models, Biological , Neuroepithelial Cells/cytology , Neuroepithelial Cells/metabolism , Zebrafish
20.
Nature ; 527(7576): 100-104, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26479035

ABSTRACT

The development of life-threatening cancer metastases at distant organs requires disseminated tumour cells' adaptation to, and co-evolution with, the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interaction between metastatic tumour cells and extrinsic signals at individual metastatic organ sites critically effects the subsequent metastatic outgrowth. Yet, it is unclear when and how disseminated tumour cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that both human and mouse tumour cells with normal expression of PTEN, an important tumour suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumour cells is restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation is epigenetically regulated by microRNAs from brain astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting microRNAs to metastatic tumour cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumour cells leads to an increased secretion of the chemokine CCL2, which recruits IBA1-expressing myeloid cells that reciprocally enhance the outgrowth of brain metastatic tumour cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumour cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic outgrowth. Our findings signify the dynamic and reciprocal cross-talk between tumour cells and the metastatic niche; importantly, they provide new opportunities for effective anti-metastasis therapies, especially of consequence for brain metastasis patients.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/secondary , Exosomes/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , MicroRNAs/genetics , PTEN Phosphohydrolase/deficiency , Tumor Microenvironment , Adaptation, Physiological/genetics , Animals , Astrocytes/cytology , Astrocytes/metabolism , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Calcium-Binding Proteins , Cell Proliferation/genetics , Chemokine CCL2/metabolism , DNA-Binding Proteins/metabolism , Down-Regulation/genetics , Evolution, Molecular , Exosomes/metabolism , Female , Genes, Tumor Suppressor , Humans , Male , Mice , Microfilament Proteins , PTEN Phosphohydrolase/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Tumor Microenvironment/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...