Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; : e0013024, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995039

ABSTRACT

c-di-AMP is an essential second messenger that binds and regulates several proteins of different functions within bacterial cells. Among those, PstA is a structurally conserved c-di-AMP-binding protein, but its function is largely unknown. PstA is structurally similar to PII signal transduction proteins, although it specifically binds c-di-AMP rather than other PII ligands such as ATP and α-ketoglutarate. In Listeria monocytogenes, we found that PstA increases ß-lactam susceptibility at normal and low c-di-AMP levels, but increases ß-lactam resistance upon c-di-AMP accumulation. Examining a PstA mutant defective for c-di-AMP binding, we found the apo form of PstA to be toxic for ß-lactam resistance, and the c-di-AMP-bound form to be beneficial. Intriguingly, a role for PstA in ß-lactam resistance is only prominent in aerobic cultures, and largely diminished under hypoxic conditions, suggesting that PstA function is linked to aerobic metabolism. However, PstA does not control aerobic growth rate, and has a modest influence on the tricarboxylic acid cycle and membrane potential-an indicator of cellular respiration. The regulatory role of PstA in ß-lactam resistance is unrelated to reactive oxygen species or oxidative stress. Interestingly, during aerobic growth, PstA function requires the cytochrome bd oxidase (CydAB), a component of the respiratory electron transport chain. The requirement for CydAB might be related to its function in maintaining a membrane potential, or redox stress response activities. Altogether, we propose a model in which apo-PstA diminishes ß-lactam resistance by interacting with an effector protein, and this activity can be countered by c-di-AMP binding or a by-product of redox stress. IMPORTANCE: PstA is a structurally conserved c-di-AMP-binding protein that is broadly present among Firmicutes bacteria. Furthermore, PstA binds c-di-AMP at high affinity and specificity, indicating an important role in the c-di-AMP signaling network. However, the molecular function of PstA remains elusive. Our findings reveal contrasting roles of PstA in ß-lactam resistance depending on c-di-AMP-binding status. We also define physiological conditions for PstA function during aerobic growth. Future efforts can exploit these conditions to identify PstA interaction partners under ß-lactam stress.

2.
Immunopharmacol Immunotoxicol ; 35(1): 15-27, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22994841

ABSTRACT

α-Hemolysin (HLY) is an important virulence factor for uropathogenic Escherichia coli. HLY is a member of the RTX family of exotoxins secreted by a number of Gram-negative bacteria. Recently, it was reported that a related RTX toxin, the Mannheimia haemolytica leukotoxin, exhibits increased cytotoxicity following brief heat treatment. In this article, we show that brief heat treatment (1 min at 100°C) increases cytotoxicity of HLY for human bladder cells, kidney epithelial cells (A498) and neutrophils. Heat treatment also increased hemolysis of human red blood cells (RBCs). Furthermore, heat treatment of previously inactived HLY restored its cytotoxicity. Heat-activated and native HLY both required glycophorin A to lyse RBCs. Native and heat-activated HLY appeared to bind equally well to the surface of A498 cells; although, Western blot analyses demonstrated binding to different proteins on the surface. Confocal microscopy revealed that heat-activated HLY bound more extensively to internal structures of permeabilized A498 cells than did native HLY. Several lines of spectroscopic evidence demonstrate irreversible changes in the structure of heat activated compared to native HLY. We show changes in secondary structure, increased exposure of tryptophan residues to the aqueous environment, an increase in molecular dimension and an increase in hydrophobic surface area. These properties are among the most common characteristics described for the molten globule state, first identified as an intermediate in protein folding. We hypothesize that brief heat treatment of HLY causes a conformational change leading to significant differences in protein-protein interactions that result in increased cytotoxicity for target cells.


Subject(s)
Escherichia coli/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Cell Line , Epithelial Cells/metabolism , Erythrocytes/metabolism , Female , Glycophorins/pharmacology , Hemolysis/physiology , Hot Temperature , Humans , Molecular Dynamics Simulation , Neutrophils/metabolism , Protein Folding , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...