Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Mol Biol Educ ; 43(4): 273-82, 2015.
Article in English | MEDLINE | ID: mdl-26148025

ABSTRACT

We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the NOS2 gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative CT method, students are able determine whether transcriptional activation of NOS2 occurs and to what degree. The exercise is aimed at second year undergraduates who possess basic knowledge of gene expression events. It requires only 4-5 hr of dedicated laboratory time and focuses on use of the primary literature, data analysis, and interpretation. Importantly, this exercise provides a mechanism to introduce the concept of differential gene expression and provides a starting point for development of more complex guided or open inquiry projects for students moving into upper level molecular biology, immunology, and biochemistry course work.


Subject(s)
Biochemistry/education , Molecular Biology/education , Real-Time Polymerase Chain Reaction/methods , Teaching/methods , Curriculum , Gene Expression , Humans , Laboratories
2.
J Microbiol Biol Educ ; 14(2): 189-96, 2013.
Article in English | MEDLINE | ID: mdl-24358382

ABSTRACT

This laboratory module simulates the process used by working scientists to ask and answer a question of biological interest. Instructors facilitate acquisition of knowledge using a comprehensive, inquiry-based approach in which students learn theory, hypothesis development, experimental design, and data interpretation and presentation. Using inflammation in macrophages as a model system, students perform a series of molecular biology techniques to address the biological question: "Does stimulus 'X' induce inflammation?" To ask this question, macrophage cells are treated with putative inflammatory mediators and then assayed for evidence of inflammatory response. Students become familiar with their assigned mediator and the relationship between their mediator and inflammation by conducting literature searches, then using this information to generate hypotheses which address the effect of their mediator on induction of inflammation. The cellular and molecular approaches used to test their hypotheses include transfection and luciferase reporter assay, immunoblot, fluorescence microscopy, enzyme-linked immunosorbent assay, and quantitative PCR. Quantitative and qualitative reasoning skills are developed through data analysis and demonstrated by successful completion of post-lab worksheets and the generation and oral presentation of a scientific poster. Learning objective assessment relies on four instruments: pre-lab quizzes, post-lab worksheets, poster presentation, and posttest. Within three cohorts (n = 85) more than 95% of our students successfully achieved the learning objectives.

3.
J Biol Chem ; 281(26): 17681-8, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16632469

ABSTRACT

Nerve growth factor (NGF) synthesis in the rat cerebral cortex is induced by the beta2-adrenergic receptor agonist clenbuterol (CLE). Because NGF is a crucial neurotrophic factor for basal forebrain cholinergic neurons, defining the mechanisms that regulate its transcription is important for developing therapeutic strategies to treat pathologies of these neurons. We previously showed that the transcription factor CCAAT/enhancer-binding protein delta (C/EBPdelta) contributes to NGF gene regulation. Here we have further defined the function of C/EBPdelta and identified a role for cAMP response element-binding protein (CREB) in NGF transcription. Inhibition of protein kinase A in C6-2B glioma cells suppressed CLE induction of an NGF promoter-reporter construct, whereas overexpression of protein kinase A increased NGF promoter activity, particularly in combination with C/EBPdelta. A CRE-like site that binds CREB was identified in the proximal NGF promoter, and C/EBPdelta and CREB were found to associate with the NGF promoter in vivo. Deletion of the CRE and/or C/EBP sites reduced CLE responsiveness of the promoter. In addition, ectopic expression of C/EBPdelta in combination with CLE treatment increased endogenous NGF mRNA levels in C6-2B cells. C/EBPdelta null mice showed complete loss of NGF induction in the cerebral cortex following CLE treatment, demonstrating a critical role for C/EBPdelta in regulating beta2-adrenergic receptor-mediated NGF expression in vivo. Thus, our findings demonstrate a critical role for C/EBPdelta in regional expression of NGF in the brain and implicate CREB in CLE-induced NGF gene transcription.


Subject(s)
Brain/physiology , CCAAT-Enhancer-Binding Protein-delta/metabolism , CREB-Binding Protein/metabolism , Nerve Growth Factor/genetics , Transcriptional Activation/physiology , Adrenergic beta-Agonists/pharmacology , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-delta/genetics , CREB-Binding Protein/genetics , Clenbuterol/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Glioma , Integrases/genetics , Integrases/metabolism , Mice , Mice, Knockout , Mutagenesis, Site-Directed , Promoter Regions, Genetic/physiology , RNA, Messenger/metabolism , Rats , Transcriptional Activation/drug effects , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...